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Abstract. Variational principles are very important for a lot of nonlinear problems to be analyzed theoretically or solved 
numerically. By the popular semi-inverse method and designing trial-Lagrange functionals skillfully, new variational principles 
are constructed successfully for the Kuramoto-Sivashinsky equation and the Coupled KdV equations, respectively, which can 
model a lot of nonlinear waves in shallow water. The established variational principles are also proved correct. The procedure 
reveals that the used technologies are very powerful and applicable, and can be extended to other nonlinear physical and 
mathematical models. 
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1. Introduction 

Nonlinear partial differential equations (PDE) are usually used to model different phenomena, ranging from mechanics to 
biology, physics, chemistry, ocean and meteorology so on [1-6]. And many mathematical methods have been proposed and 
developed to get solutions [5-29] of nonlinear PDEs. When contrasted with other approximate analytical methods, variational 
methods such as Ritz technique [12] and variational iteration method [13-17] show a lot of advantages. Because variational 
principles are the theoretical basis for many kinds of variational methods, it is a very important task to seek explicit variational 
formulations for nonlinear and complex PDEs.  

In the past decades, various numerical methods have been introduced to tackle the challenges of solving the nonlinear 
shallow water equations. Durgun et al. [13] addressed the time-fractional non-linear partial differential equations with 
proportional delays using the Fractional Variational Iteration Method, incorporating the modified Riemann-Liouville fractional 
derivative. The numerical solutions derived through this method demonstrate superior accuracy compared to those obtained via 
the Homotopy Perturbation Method and Differential Transform Method, when applied to the same data set and approximation 
order. The Variational Iteration Method (VIM), which was introduced by He in 1999 [14], has been extensively utilized by 
numerous researchers for developing approximate solutions to a broad range of scientific and engineering models [15, 16]. The 
foundational techniques employed by a majority of researchers are grid-based approaches, like the finite difference method 
(FDM) [18]. Following certain adaptations, the Fractional Variational Iteration Method (FVIM) has been employed in the study of 
fractional differential equations by He and other researchers [19]. He [19] contrasted the traditional Variational Iteration Method 
with the Fractional Variational Iteration Method. They introduced the fractional complex transform as a technique to transform a 
fractional differential equation into its corresponding differential form, thereby facilitating the straightforward construction of its 
variational iteration algorithm. In recent years, many scholars have shifted their focus towards employing the recently 
introduced meshless methods to solve the nonlinear shallow water equations, such as natural element method [20], smoothed 
particle hydrodynamics [21] and etc. From the results of these numerical simulations, it is evident that the method boasts broad 
applicability, commendable accuracy, and stability. However, its application to the study of nonlinear shock waves with 
discontinuous issues remains unexplored. Recently, many scientists have made great success for constructing different kinds of 
variational principles in various fields such as fluid dynamics, ocean, meteorology, mathematical biology, solid state physics, and 
plasma physics [24-37]. In this paper, we will use the semi-inverse method [24-30] to establish new variational principles for the 
Kuramoto-Sivashinsky equation and the Coupled KdV equations, respectively, which contains various solitary waves [28, 29]. 

2. Variational Principle for the Kuramoto-Sivashinsky Equation 

The Kuramoto–Sivashinsky equation (also called the KS equation) is a fourth-order nonlinear partial differential equation. It 
was derived by Yoshiki Kuramoto [38-39] and Gregory Sivashinsky [40] as a model for phase turbulence in reaction–diffusion 
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systems and to model the diffusive–thermal instabilities in a laminar flame front. The Kuramoto–Sivashinsky equation is known 
for its chaotic behavior [41-42]. The KS equation is given as follows: 

( ) ( ) 0t x xx xxxxu uu t u t uµ λ+ + + =  (1) 

where ( )tµ  and ( )tλ
 
are time-varying coefficients. Equation (1) can be rewritten in the following equivalent form: 

2

( ) 0
2t x xxx x

u
u u uµ λ+ + + =  (2) 

A potential function   can be introduced, defined as follows: 

2

( )
2

x

t x xxx

u

u
u uµ λ

 = =− + +




 (3) 

If Eqs. (3) are adopted, the nonlinear partial differential equation (2) will be automatically satisfied. The objective of this 
section is to establish a new variational formula, whose Euler-Lagrange equations satisfy Eqs. (2) and (3). To achieve this goal, the 
semi-inverse method proposed by He [12-18] will be employed here to construct the generalized variational formula for the 
Kuramoto-Sivashinsky Equation (1) as: 

( , ) ( , , , , )x xxx t xJ u L u u u dxdt= ∫∫    (4) 

where L  in Eq. (4) is the trial-Lagrange functional, and its specific form is tentatively defined as follows: 

2

( )
2t x xxx x

u
L u u u Fµ λ= + + + +   (5) 

Function F  in Eq. (5) is an undetermined function that depends solely on u  and its derivatives, independent of .  There 
are various choices available to construct the trial-Lagrange functional, and relevant examples can be found in [12-20]. The trial-
Lagrange functional represented by Eq. (5) possesses an advantage. By considering its critical condition with respect to ,  

( ) ( ) 0
x t

L L L

x t

∂ ∂ ∂ ∂ ∂
− − =

∂ ∂ ∂ ∂ ∂  
 (6) 

Equation (1) or Eq. (2) can be automatically derived. Now, considering the critical condition of the L  with respect to ,u  we 
can obtain: 

3
( ) ( ) 0

x xxx

L L L F

u x u x u u

δ

δ

∂ ∂ ∂ ∂ ∂
− − + =

∂ ∂ ∂ ∂ ∂
 (7) 

In Eq. (7), where /F uδ δ  is called He's variational derivative [12-18] of F  with respect to .u  
Substituting the trial-Lagrange function Eq. (5) into Eq. (7), we obtain: 

0t x xx xxxx

F
u

u

δ
µ λ

δ
+ − − + =     (8) 

The purpose of constructing such an undetermined function F  is to make Eq. (8) equivalent to the field equations (3). 
Accordingly, substituting the field equations (3) into Eq. (8), we get: 2/ / 2 2 2 .x xxxF u u u uδ δ µ λ=− + +  Since we cannot identify F  
successfully, it indicates that the current trial-Lagrange functional L  is not appropriate, so we have to modify the trial-Lagrange 
function. The modified L  is represented as follows: 

2

( )
2t x t x xxx x

u
L Au B u u Fµ λ= + + + + +    (9) 

Then, we calculate the variational operations with respect to   and u  on Eq. (9), respectively: 

: ( 2 ) + 0t x xx xxxx

L F
A B u uu u u

δ δ
µ λ

δ δ
− + − − − =

 
 (10) 

: 0t x xx xxxx

L F
A u

u u

δ δ
µ λ

δ δ
+ − − + =     (11) 

In view of Eq. (10) and since / 0,Fδ δ =  Eq. (10) can be transformed into: 

( 2 ) 0t x xx xxxxA B u uu u uµ λ− + − − − =  (12) 

Because Eq. (12) should be identical to Eq. (1). That is: 

2 1A B+ =  (13) 

After substituting Eqs. (3) into Eq. (11) and rearranging them, we obtain: 

2( 1)( ) ( 1) 0
2x xxx

A F
A u u u

u

δ
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δ
+ + + − − =  (14) 
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In order to identify the unknown function F  successfully, it is necessary to eliminate the terms with xu  and
 xxxu  in Eq. 

(14), setting the coefficients of xu  and
 xxxu  to zero, thereby determining the undetermined coefficient 1.A=−  Furthermore, 

from Eq. (13), it can be further determined that 1.B=  Substituting the value of A  into Eq. (14), we obtain: 

23

2

F
u

u

δ

δ
=−  (15) 

As a result, F  can be identified successfully as: 

3

2

u
F =−  (16) 

Substituting the expression of F  from Eq. (16) into Eq. (9) and then using Eq. (9) into Eq. (4), the new variational principle for 
the one-dimensional Kuramoto-Sivashinsky equation (1) is obtained, which read: 

2 3( , ) { [ 2 ( ) ( ) ] 2}x t t x xxx xJ u u u t u t u u dxdtµ λ= − + + + −∫∫     (17) 

The variational principle in Eq. (17) is subject to the constraint .x u=  We will verify the correctness of the obtained 
generalized variational principle for the Kuramoto-Sivashinsky equation. By taking the first-order variation of the functional, Eq. 
(17), with respect to   and ,u  and applying the stationary condition, we can obtain the two equations (18) and (19): 

2( 2 ) 2 0t x xxx x xtu u u uδ µ λ− + + =    (18) 

23
0

2t x xx xxxxu u uδ µ λ− + − − − =     (19) 

Equations (18) and (19), also called as the Euler-Lagrange equations, are derived from the functional Eq. (17). Substituting 

x u=  into Eq. (18) leads to the original Kuramoto-Sivashinsky Eq. (1), obviously. Additionally, by substituting x u=  into Eq. 
(19), we can get that: 2 / 2 0,t x xxxu u uµ λ− − − =  which is identical to the second relation of equations (3). This confirms that the 
Euler-Lagrange equations (18) and (19) obtained from the new variational principle formula (17) are equivalent to the second 
equation in the field equations (3) and also equivalent to Eq. (1). Hence, we proved the obtained generalized variational principle 
for the Kuramoto-Sivashinsky equation (17) is correct.  

3. Variational Principles for the Coupled KdV Equations 

The coupled KdV equation is a system of two nonlinear partial differential equations that describes the evolution of two 
interacting waves. It was first introduced by Hirota and Satsuma [44]. Since its inception, the equation has been studied 
extensively by mathematicians and physicists, researchers continue to explore the coupled KdV equation's dynamics and 
implications, making it an essential tool for understanding the behavior of nonlinear waves in various physical contexts [44, 45]. 
The Coupled KdV equations are given as following: 

2 2

2 2

( ) 0
2

( ) 0
2

t xx x

t xx x

k
u u u v kuv

k
v v v u kuv

 + + + + = + + + + =

 (20) 

For convenience, we temporarily consider the case when k = 2. Then, the above coupled equations (20) becomes: 

2 2

2 2

( 2 ) 0

( 2 ) 0

t xx x

t xx x

u u u v uv

v v v u uv

 + + + + = + + + + =
 (21) 

Equations (20) and (21) can be derived through symmetry constraints from the KP equation and have been applied in various 
technological fields such as statistical physics, plasma physics, and nonlinear fiber optics communication. Its Painlevé properties 
and infinite number of symmetries with respect to either the time variable t or the spatial variable y have also been studied. Two 
potential functions,   and ,Π  can be introduced as: 

2 2( 2 )

x

t xx

u

u u v uv

 = =− + + +




 (22) 

2 2( 2 )

x

t xx

v

v v u uv

Π =Π =− + + +
 (23) 

If we firstly adopt equations (22), then the second relation in equations (20) and (21) is automatically satisfied. The objective of 
this section is to establish a generalized variational formula, whose Euler-Lagrange equations satisfy the first relation in Eqs. (21) 
and (22). To achieve this goal, the semi-inverse method, proposed by He [24-27], will be employed here to construct the 
generalized variational formula for the coupled KdV Eq. (21) as: 

( , , )J u v Ldxdydt= ∫∫∫  (24) 

where L  is the trial-Lagrange functional, defined by the following formula: 

2 2( 2 ) ( , )t xx xL v v v u uv F u v= + + + + +   (25) 
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and F  in Eq. (25) is the unknown function of ,u  ,v  and their derivatives. There are various choices available to construct the 

trial-Lagrange functional, and relevant examples can be found in references [12-20]. The advantage of the trial-Lagrange 
functional represented by Eq. (25) is its critical condition with respect to :  

2

2
( ) ( ) ( ) 0

t x xx

L L L L

t x x

∂ ∂ ∂ ∂ ∂ ∂ ∂
− − + =

∂ ∂ ∂ ∂ ∂ ∂ ∂   
 (26) 

The first one in equations (21) can be derived. Now, considering the critical conditions of L  with respect to both u  and ,v  
and taking into account the presence of derivatives of u  and v  in ,L  we obtain: 

0
L F

u u

δ

δ

∂
+ =

∂
 (27) 

2

2
( ) 0

xx

L L F

v x v v

δ

δ

∂ ∂ ∂
+ + =
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 (28) 

where /F uδ δ  and /F vδ δ  are referred to as the He's variational derivatives [24-27, 32, 33] of F  with respect to u  and ,v  
respectively, and they are defined as follows: 

2

2
,

x t xx

F F F F F

u u x u t u x u

δ

δ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= − − + +
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⋯   

2

2
.

x t xx

F F F F F

v v x v t v x v

δ

δ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= − − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

⋯   

After substituting Eq. (25) into Eqs. (27) and (28), and going through the derivation, we obtain: 

: 2 2 0t xxx x x

L F
v u

v v

δ δ

δ δ
+ + + + =     (29) 

: 2 2 0x x

L F
u v

u u

δ δ

δ δ
+ + =   (30) 

The purpose of constructing the unknown function F is to make Eqs. (29) and (30) equivalent to the field equations in Eqs. (23). 
Therefore, we substitute the first and second in Eqs. (22) into Eqs. (29) and (30), respectively, resulting in: 

22 2
F

u uv
u

δ

δ
=− −  (31) 

2 2F
u v

v

δ

δ
=− +  (32) 

As a result, the expression for the unknown function F  is obtained: 

3 3
2 2

3 3

v u
F u v=− + −  (33) 

By substituting Eq. (33) into Eq. (25), we obtain the new trial-Lagrange functional as: 

2 2 3 2 3( 2 ) (2 3 ) 3t xx xL v v v u uv u u v v= + + + + − + −   (34) 

By substituting Eq. (34) into Eq. (26) and then using Eq. (26) in Eq. (25), we obtain the variational principle for the coupled KdV 
equations: 

2 2 3 2 3( , , ) [ ( 2 ) (2 3 ) 3]t xx xJ u v v v v u uv u u v v dxdt= + + + + − + −∫∫    (35) 

Below, we will verify the correctness of the obtained variational principle (35) for the coupled KdV nonlinear equations by 
taking the stationary conditions of the functional Eq. (35) with respect to ,  ,u  and ,v  respectively. This process will lead to 
the following Euler-Lagrange equations: 

2 2

2

2 2

: ( 2 ) 0

: (2 2 ) (2 2 ) 0

: (2 2 ) 0

t xx x

x

t xxx x

v v v u uv

u u v u uv

v u v u v

δ

δ

δ

 − − + + + = + − + = + + + − + =





  

 (36) 

In Eqs. (36), ,δ  ,uδ  and vδ  represent the first-order variation of ,  ,u  and ,v  respectively. The first one in Eq. (36) is 
identical to the first one in Eq. (20), Eq. (21) obviously. From the first one in Eq. (22), we get ,x u=  and by substituting 

2 22 0,t xxu u uv v+ + + + =  we obtain 2 2( 2 ).t xxu u v uv=− + + +  This shows that the third one in Eq. (36) is identical to the 
second one in Eq. (22). Hence, it is demonstrated that the obtained generalized variational principle for the coupled KdV 
equations is correct. 

If we introduce the special function Π  from Eqs. (23), then the new trial-Lagrange functional 1L  is defined as follows: 

2 2
1 ( 2 ) ( , )t xx xL u u u v uv G u v= Π + + + + Π +  (37) 
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The function G  is an unknown function of ,u  ,v  and their derivatives. Various choices exist for constructing the trial-
Lagrange functional, and relevant examples can be found in references [12-20]. The advantage of the trial-Lagrange functional 
represented by Eq. (37) is its critical condition with respect to :Π  

1 1 1( ) ( ) 0
x t

L L L

x t

∂ ∂ ∂ ∂ ∂
− − =

∂Π ∂ ∂Π ∂ ∂Π
 (38) 

The second one in Eqs. (21) can be derived. Now, considering the critical conditions of 1L  with respect to both u  and ,v  we 

get: 

2
1 1 1

2
: ( ) 0

xx

L L L G

u u x u u

δ δ

δ δ

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (39) 

1 1: 0
L L G

u v v

δ δ

δ δ

∂
+ =

∂
 (40) 

where /G uδ δ  and /G vδ δ  are referred to as the He's variational derivatives [24-27, 32, 33] of G  with respect to u  and ,v  
respectively, and they are defined as follows: 

2

2
,

x t xx

G G G G G

u u x u t u x u

δ

δ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= − − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

⋯   

2

2
.

x t xx

G G G G G

v v x v t v x v

δ

δ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= − − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

⋯   

From Eqs. (37), (39) and (40), we obtain: 

2( ) 0t x xxx

G
u v

u

δ

δ
Π + + Π +Π + =  (41) 

2 ( ) 0
G

v u v
v

δ

δ
+ + =  (42) 

The purpose of constructing the unknow function G  is to make Eqs. (41) and (42) equivalent to the field Eqs. (23). Therefore, 
we substitute Eq. (23) into Eqs. (41) and (42), resulting in: 

2 2G
u v

u

δ

δ
= −  (43) 

2 ( )
G

v u v
v

δ

δ
=− +  (44) 

Hence, we obtain: 

3 2 3( 3 2 ) 3G u uv v= − −  (45) 

By substituting Eq. (45) into Eq. (38) and then using Eq. (38) in Eq. (37), we obtain the variational principle for the coupled KdV 
nonlinear equations: 

2 2 3 2 3( , , ) [ ( 2 ) ( 3 2 ) 3]t xx xJ u v u u u v uv u uv v dxdtΠ = Π + + + + Π + − −∫∫  (46) 

If we take the first variations of the functional Eq. (46) with respect to ,Π  ,u  and ,v  respectively, and apply the stationary 
condition, we obtain the following form of the Euler-Lagrange equations: 

2 2

2 2

: ( 2 ) 0

: 2( ) 0

: 2 ( ) 2 ( ) 0

t xx x

t x xxx

x

u u u v uv

u u v u v

v u v v u v

δ

δ

δ

 Π − − + + + = Π + + Π +Π + − = Π + − + =

 (47) 

From the third one in the above equations, we get: ,x vΠ =  and by substituting it into the second one in Eq. (47), we obtain: 
2 2( 2 ).t xxv v u uvΠ =− + + +  Thus, it is verified that the obtained Euler-Lagrange equations are equivalent to the field equations 

represented by Eqs. (22) and the second one in Eqs. (23). In conclusion, in this section, we have used He's semi-inverse method 
[24-27, 32, 33] to derive the generalized variational principle for the coupled KdV nonlinear equation (46). Furthermore, through 
the consistency between the Euler-Lagrange equations derived from the functional equations and the original equations, the 
correctness of the obtained generalized variational principle has been demonstrated. 

4. Conclusion 

In the second and third parts of this paper, new variational principles have been successfully constructed for the Kuramoto-
Sivashinsky equation and the coupled KdV equations, respectively, by the semi-inverse method [24-30] and designing trial-
Lagrange functionals skillfully. Moreover, the obtained variational principles have proved to be correct by minimizing the 
corresponding functionals. From the above analysis, it is concluded that the variational principle for the coupled KdV equations 
studied in this paper have different integral formulations, from which the same nonlinear PDEs can be derived. The procedure 
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also reveals that the semi-inverse method [24-30] is effective and powerful. According to the obtained variational principles, we 
can study possible solution structures for solitary waves. Furthermore, new variational principles can also provide hints for 
numerical algorithms, equations (1) and (21) can be solved numerically by variational-based methods. Our future work will focus 
on the dynamics of soliton in the Kuramoto-Sivashinsky equation and the coupled KdV equations, by variational approximation 
method and choosing an appropriate variational principle established in this paper. 
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