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Abstract. This paper discusses the modeling and trajectory tracking control of a Bi-rotor. A novel class of vertical flight robots that 
can perform vertical takeoff, landing, and passenger transportation. Bi-rotor aircraft utilize a simplified mechanism compared to 
helicopters while maintaining the ability to perform complex maneuvers. With six degrees of freedom and four actuators, including 
two tilt actuators for steering and two propellers for thrust generation, they are classified as underactuated systems. The trajectory 
tracking controller employs a combination of feedback linearization and backstepping control methods, with an inner loop 
controlling the Euler angles and an outer loop regulating the Bi-rotor position and calculating desired angles for trajectory tracking. 
Control algorithms in the limited existing literature often rely on simplified mathematical models, which tend to overlook crucial 
nonlinear coupling terms. However, neglecting these terms can have significant implications for the dynamic behavior of the 
system. The dynamic modeling of the Bi-rotor aircraft was validated using the ADAMS software and integrated with the Simulink 
environment in MATLAB software. The obtained results represent the effectiveness of the proposed algorithm for the control of the 
Bi-rotor. 

Keywords: Bi-rotor aircraft; Backstepping control; Feedback linearization; Tilt actuators; ADAMS software. 

1. Introduction 
 

In recent years, there has been a significant increase in the importance of highly maneuverable vertical flight robots, particularly 
in air transportation in confined spaces [1]. Advancements in science and technology have led to the utilization of these robots not 
only for entertainment and filming purposes but also for tasks such as postal delivery, food transportation, providing first aid to 
injured people [2], deploying life-saving tubes for drowning individuals, locating hiding criminals during pursuits, and military 
applications [3]. However, these advancements require air vehicles to be more compact for a given payload, making it increasingly 
challenging to maintain proper control as their size decreases [4]. 

There are various classes of UAVs capable of carrying different types of payloads, yet despite these advancements, there are still 
numerous opportunities for further development in this field [5]. Multi-rotor aircraft have attracted considerable attention with 
their original structure and arrangement, and the most common ones are currently four, six, and eight rotor aircraft, which must 
have different propeller speeds to move [6]. With the advancement of configurations that allow for high maneuverability to easily 
pass through limited space environments while effectively reducing the unit time power demand, a Bi-rotor, whose dynamic system 
was capable of tilting, was presented [7]. Sanchez et al. [8] proposed one of the first studies in the literature that implements the 
concept of a Tiltrotor vehicle to develop a mini UAV, and this article presents the modeling of the system through the Newton-Euler 
formulation and a control scheme that uses bounded smooth functions to perform hovering. In [9] a complex configuration is 
proposed and implemented for hover flight. This configuration utilizes the gyroscopic effect provided by tilting rotors. However, it 
should be noted that controlling the pitch angle is difficult due to the weak contribution of gyroscopic-based torque in handling 
pitch dynamics. In [10], Kendall et al. presented a backstepping algorithm for a mathematical model inspired by the Gress [9] 
mechanism, whose simulation results lead to the stabilization of a Bi-rotor vehicle. 

The key to achieving stable flight for the Bi-rotor is the design of its attitude controller. The accuracy of the model heavily relies 
on the control of nonlinear systems [11]. 

Researchers have proposed various PID control methods for controlling the position and orientation of Bi-rotors [12]. Despite 
their usefulness, such techniques have their limitations. For instance, in [11], the Euler method was used to linearize the dynamics 
of a Bi-rotor. 

Various nonlinear flight control systems have been proposed and developed to address linear controller design's theoretical 
constraints and disadvantages. These advanced systems exhibit superior performance in terms of stability and robustness and are 
capable of handling complex scenarios beyond the scope of traditional linear control techniques. The nonlinear controllers are 
designed to overcome the fundamental limitations of linear models, which are rooted in the assumption of small perturbations 
and linearity of the system dynamics. By adopting a nonlinear approach [13], these systems can capture the full range of system 
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dynamics and exhibit superior performance characteristics. 
Several nonlinear control methods, such as feedback linearization [14], backstepping [15, 16], dynamic inversion, predictive 

control [17], and sliding mode control [18, 19], have been proposed for controlling the motion of UAVs, such as quadrotors. However, 
regarding trajectory tracking for Bi-rotors, nonlinear control has only been reported in backstepping [20], and the presented methods 
have only focused on linear control. Within the limited scope of existing research, mathematical models frequently employ 
simplified representations that overlook critical nonlinear coupling terms. However, the omission of these fundamental terms 
within the models can have profound and far-reaching implications for the dynamic behavior of the system. 

The objective of the current work is to develop a comprehensive model of a Bi-rotor drone that accurately captures its intricate 
behaviors. Another objective is to design effective control methods for regulating the motion of the UAV, ensuring reliable and 
precise performance. The research aims to employ nonlinear control techniques, such as feedback linearization, backstepping, and 
the combined backstepping and feedback linearization (CBFL) control method, to advance attitude and position control in Bi-rotor 
drones. 

The main achievements of this paper are: (1) The current work presents a validated comprehensive dynamic model for the Bi-
rotor aircraft using the ADAMS software integrated with the Simulink environment in MATLAB software. (2) The proposed 
methodology effectively regulates the motion of the UAV, offering reliable and precise performance. (3) The stability of the proposed 
control approach is analyzed using the Lyapunov method. (4) By employing nonlinear control techniques, the research contributes 
to the advancement of attitude and position control in Bi-rotor drones, specifically through feedback linearization, backstepping, 
and the combined backstepping and feedback linearization (CBFL) control method. (5) The study's findings have significant 
implications for the field of aerial robotics and can find potential applications across various industries. 

In conclusion, this article presents a comprehensive model of a Bi-rotor drone that accounts for its intricate behaviors, with a 
validated dynamic model for the Bi-rotor aircraft using the ADAMS software integrated with the Simulink environment in MATLAB 
software. The proposed methodology effectively regulates the motion of the UAV, ensuring reliable and precise performance. The 
study's findings have significant implications for the field of aerial robotics and offer potential applications across various 
industries. By employing nonlinear control techniques such as feedback linearization, backstepping, and the combined 
backstepping and feedback linearization (CBFL) control method, including the powerful CBFL method previously mentioned in [21], 
this research contributes to the advancement of attitude and position control in Bi-rotor drones. 

 
2. Dynamic Modeling 

 

A Bi-rotor consists of two propellers and two tilting actuators. By rotating the propellers, thrust forces, and pitch/roll torques 
are generated. The propellers will rotate in opposite directions at equal speeds to eliminate the resulting yaw torque. The servo 
motors are responsible for determining the angle of the propellers at each moment to adjust the direction of the generated forces 
for robot control.  

Bi-rotors can maneuver in longitudinal and lateral motions using two strategies. In the first strategy, similar to a helicopter, they 
move by changing the propellers' angle with the tilting actuators' help. Alternatively, similar to a quadrotor in the second strategy, 
they achieve longitudinal and lateral motion by creating speed differences among the propellers. Generally, Bi-rotors combine both 
methods to perform the best maneuver in the shortest possible time. In the following, the attention is directed toward the most 
pertinent nonlinear modeling and the primary factors that exert influence on the Bi-rotor, such as aerodynamic thrust force, drag 
torque, and gyroscopic effects. The presence of tilt actuators necessitates a separate treatment for the modeling of other vertical-
flight robots. Initially, the degrees of freedom of the Bi-rotor are analyzed, followed by the derivation of the dynamic model of the 
Bi-rotor in the form of governing equations, based on the system assumptions. 
In general, an entirely unconstrained rigid body in space is embodied by a Bi-rotor, characterized by six degrees of freedom. These 
encompass three translational motions (longitudinal, lateral, vertical) and rotations around each of these motions. The aircraft's 
position and orientation are comprehensively defined by these degrees of freedom. 

For the modeling of the Bi-rotor, four Cartesian coordinate systems are used: 
1. Inertial Frame: It is characterized by a fixed orientation and serves as the absolute frame of reference. 
2. Body-attached Frame: It is linked to the robot and its orientation is contingent upon the Bi-rotor's attitude at any given 

moment. 
3. Propeller Tilt Frames: Two coordinate systems are considered for the tilt of each propeller around the tilt axis. 

 

Fig. 1. The Bi-rotor and coordinate systems. 
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(a)      (b)      (c) 

Fig. 2. Bi-rotor motion maneuvers. 

 

Fig. 3. Rotation of the propellers of the Bi-rotor. 

The configuration of the system is illustrated in Fig. 1. In this figure, G G GX Y Z  is the inertial coordinate system, B B BX Y Z  is the 
local coordinate system, 

1 1 1
X Y Zt t t  and 

2 2 2
X Y Zt t t  are coordinate systems for the tilt mechanisms of each propeller. Where W 

represents the weight force, f1 and f2 denote the thrust forces generated by the propellers. 
Based on the frame and arrangement of the actuators in the Bi-rotor's motion, the following descriptions are applicable: 
a) To achieve forward motion (Fig. 2(a)), the Bi-rotor employs a rotational speed of propellers (1) and (2). Additionally, both 

propellers tilt in a clockwise direction around the Y-axis. This alteration in the angle of the thrust forces propels the Bi-rotor 
forward. 

b) In order to initiate a rightward movement (Fig. 2(b)), propeller (1) rotates at a higher speed compared to propeller (2). This 
discrepancy in rotational speed results in a change in the generated force, causing the robot to move in the (-Y) direction. To 
counteract the increased generated torque, propeller (1) tilts counterclockwise around the Y-axis. 

c) During hovering (Fig. 2(c)), the propellers rotate at a consistent speed in opposite directions. This synchronized rotation 
generates a thrust force that precisely balances the weight of the robot. However, since the robot's center of mass is not 
aligned with the Y-axis, the propellers are tilted at fixed angles. These equal and opposite tilts effectively counteract the 
torques produced around the Y-axis, ensuring that the propeller speed remains constant. 

By taking into account the two thrust forces of propellers and two tilt actuators as the four inputs, and considering the six 
degrees of freedom for the Bi-rotor, the six dynamic equations are computed using the Newton-Euler method. The Euler 
transformation matrix [22] is expressed as follows. 

cos cos cos sin sin sin cos cos sin cos sin sin

sin cos sin sin sin sin sin cos cos sin

sin cos sin cos cos

ψ θ ψ θ ϕ ψ ϕ ϕ θ ψ ϕ ψ

ψ θ ψ θ ϕ ψ θ ϕ ψ ϕ

θ θ ϕ θ ϕ

 − + 
 = − 
 −  

G
BR  (1) 

For each of the tilt actuators of the Bi-rotor, a coordinate system will be considered, in which the forces and torques generated 
will be transformed to the local coordinate systems using the transfer matrices (2) and (3) and ultimately transferred to the absolute 
coordinate system using the Euler transformation matrix. Figure 3 illustrates the Bi-rotor as well as the direction of propellers’ 
rotation. In this figure, i i iX YZ  represents the coordinate systems before rotation, and it it itX Y Z  represents the rotated coordinate 
systems. 

Rotation matrices for each propeller are as : 

( )
1 1

1

1 1

cos 0 sin

0 1 0
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θ θ

θ

θ θ

 
 
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 −  

B
TR (2) 

( )
2 2

2

2 2
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θ θ

 
 
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B
TR (3) 

The expression of the dynamics of a rigid body subjected to external forces and torques applied to its center of mass can be 
achieved by utilizing the Newton-Euler equations for three-dimensional space. These equations are formulated as: 

3 3

3 3

0   0

0 ω ωα

×

×

      
      = +      ×      
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where FG is the sum of forces acting on the Bi-rotor from the actuators and external forces, expressed in three-dimensional space 
as follows: 

 =   
TG G G G

x y zF F F F  (5) 

Furthermore, aG represents the acceleration of the Bi-rotor’s center of mass, given by the following form: 

[ ]= ɺɺ ɺɺ ɺɺ
TG x y za  (6) 

Also MB represents the torques applied to the Bi-rotor in the local coordinate system as follows: 

 =   
TB B B B

x y zM M M M  (7) 

The inertia matrix of the Bi-rotor is as follows: 

0

0 0

0

 
 
 =  
 
 

x xz

y

xz z

I I

I I

I I

 (8) 

where Ix, Iy, Iz and Ixz are the moments of inertia of the Bi-rotor in the local coordinate system. In addition, the angular velocity and 
angular acceleration of the Bi-rotor in the local frame are defined as follows: 

 ω ϕ θ ψ =   
ɺ ɺɺ

TB  (9) 

ϕα θ ψ =   
ɺɺ ɺɺɺɺ

TB  (10) 

A rotating propeller generates a thrust force in the positive �� direction of the local coordinate system. The magnitude of this 
force is calculated according to equation (11) for Bi-rotor propellers. 

( )2   1 2ω= = →i if b i  (11) 

where fi represents the thrust force, b is the thrust coefficient, and ωi  is the rotational speed of each propeller. The thrust coefficient 
is unique for each propeller which is calculated based on the following equation : 

2  ρ= Tb c AR  (12) 

In this equation, ρ  represents the air density, R is the radius of the propellers, A is the area of the propeller disc (wetted area), 
and Tc  is the thrust coefficient. The thrust coefficient is a dimensionless parameter determined based on the airfoil profile of the 
propeller which is calculated using the blade element momentum theory [23]. 

Considering that the generalized forces are required to be expressed in the main frame, the consideration is given to the total 
thrust forces in the Bx  direction 1( )u  and the total thrust forces in the Bz  direction 2( ).u  To convert these forces into the inertial 
frame, the transformation matrices, as described by equations (1), (2), and (3), are utilized as follows : 

( )
( )

2 1
  

1 2 2 1

1 2 2 1

0 0   cos

0 0      

 

ϕ ψ ϕ ψ θ θ ψ

ϕ θ ψ ψ ϕ θ ψ

ϕ θ θ

      + +           =  + = − +              −        

G B B
t B T T

sin sin cos sin u cos cos u

F R R R cos sin sin cos sin u cos sin u

f f cos cos u sin u

 (13) 

The robot's center of mass is subjected to the gravitational force, which is applied in the negative zI direction in the fixed 
coordinate system. The expression for the gravitational force is as follows: 

[ ]0 0= − T

gF mg  (14) 

The aerodynamic forces are the forces that arise from the rotation of the propellers in the Bi-rotor and act in opposition to the 
thrust force, thereby impeding the motion of the Bi-rotor. These forces can be defined as follows: 

0 0

0 0

0 0

γ

γ

γ

   
   
   =    
   
   

ɺ

ɺ

ɺ

x

yf

z

x

F y

z

 (15) 

The aerodynamic coefficients ( ),  , γ γ γx y z  are utilized in the formulation. The resultant force equations in the Bi-rotor, which are 
obtained by summing equations (13), (14), and (15), are expressed as follows : 

= + −I
t g fF F F F  (16) 

As a result, the dynamic equations are as follows: 

( )
( )

2 1

2 1

2 1

sin   cos sin cos cos 0 0 0

      0 0 0

  0 0

ϕ ψ ϕ ψ θ θ ψ γ

ϕ θ ψ ψ ϕ θ ψ γ

ϕ θ θ γ

        + +                = − + + −                − −         

ɺ ɺ

ɺ

ɺ

ɺ ɺ

ɺ

ɺɺ

x

y

z

mx sin cos u u x

my cos sin sin cos sin u cos sin u y

mz cos cos u sin u mg z

 (17) 
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The drag torque of each propeller is generated in the opposite direction of its rotation. The magnitude of this torque for each 
propeller can be calculated as: 

( )2   1 2ω= = →i iM d i  (18) 

where Mi is the drag torque of each propeller and d is the drag coefficient. The drag coefficient is calculated for each propeller as: 

3  ρ= Db c AR  (19) 

In this equation, ρ  represents the air density, R is the radius of the propellers, A is the surface area of the propeller (wetted 
area), and Dc  is the drag coefficient. The drag coefficient, similar to the thrust coefficient, is a dimensionless number determined 
based on the airfoil profile of the propeller using the momentum theory and blade element theory. 

In the equations governing the propeller torque, the torques exerted by the propellers around the propeller axes in the local 
coordinates are influenced by the control inputs that include: 

1. The drag torque arising from the rotation of the propellers is applied in the opposite direction of the propeller rotation axis. 
It occurs due to the resistance encountered during propeller rotation and is represented by equation (20). 

2. The torque resulting from the thrust forces produced by each propeller is induced due to the distance between the forces and 
the robot's center of mass. It is expressed by equations (21). 

1 2

1 2

0 0

0 0

   
   
   = +   
   −   

G B G B
p B T B TM R R R R

M M

 (20) 

1 2     

                     =  × + − ×                 − −      

c c

s

c c

x x

M l F l F

z z

 (21) 

The total torque due to the rotation of the propellers is as: 

2 2 2 2
1 1 2 2 1 1 2 2 4

1 2 1 2
2 2 2 2

1 1 2 2 1 1 2 2 3

     

ω ω ω ω

ω ω ω ω

   − − +      = + = − = −      − + − +    

t p s c c c c

blc blc ds ds u

M M M u z u x u z u x

dc dc bls bls u

 (22) 

The gyroscopic effect in the Bi-rotor arises from the simultaneous generation of torques caused by the rotation of the propellers 
and the rotation of the Bi-rotor's body around its local coordinate axes. A torque is created, and its magnitude and direction are 
calculated as follows : 

( ) ( )1 2

1 2

0 0

0 0

σ θ

ϕ θ ψ ϕσ ψσ

ω ω σ θ

                 = + + × + = − +               −       

ɺ

� � �
ɺ ɺ ɺ

ɺ

ɺ ɺ

r z

B B
g r T T r z x

r x

J

M i j k J R R J

J

 (23) 

The inertia of the rotors, denoted as ,rJ  is involved in the calculations. The vector sums of the propeller rotational velocities in 
the x and z directions of the local coordinate system, represented by σz  and ,σx  respectively, are determined by considering their 
rotational directions, as specified as: 

( ) ( )1 1 2 2sin sinσ = −x w t w t  (24) 

( ) ( )1 1 2 2cos cosσ = −z w t w t  (25) 

Similar to the force equations, certain torques oppose the motion of the Bi-rotor. These aerodynamic torques are defined within 
the rotor torque equations as follows : 

2

2

2

0 0

0 0

0 0

ϕ

θ

ψ

ϕγ

γ θ

γ ψ

        =            

ɺ

ɺ

ɺ

fM  (26) 

where ( ,  ,  )ϕ θ ψγ γ γ  are the coefficients of aerodynamic friction. 
Taking into account all the mentioned effects and using equations (22), (23), and (26), the rotational equations of motion are 

calculated as follows: 

( )1ϕ θ ψ −  = + −  
ɺɺ ɺɺɺɺ

T

t g fI M M M  (27) 

Therefore, 

 

( )
( )

( )
( ) ( )

4
2 2

1 2

3

0 0

  0 0
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ϕ

θ

ψ

θψ ϕθ σ θϕ γ

θ ϕψ ψ ϕ ϕσ ψσ γ

γψ ϕθ ψθ σ θ

     −                      = − − − + − + − + −                     −  −            

ɺ
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ɺ ɺ

ɺɺ

ɺɺ ɺ ɺ ɺ

ɺ
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y z xz r z

z x xz c c r z x
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I I I Ju

I I I u z u x J

uI I I J

2

2

2

ϕ

θ

ψ

 
 
         

ɺ

ɺ

ɺ

 (28) 
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Finally, the dynamic equations of the Bi-rotor are expressed as follows: 

( )( )2 1

1
  cos sin sin cos sin cos sin  

γ
ϕ θ ψ ψ ϕ θ ψ= − + −ɺɺ ɺ

yu uy y
m m

 

( )2 1

1
  cos cos sin  

γ
ϕ θ θ= − − −ɺɺ ɺzu uz g z

m m
   

( ) ( ) ( )2 2 2 2
4 3

2 2

                                  
    

     
ψ ϕ

θ σ σ θϕ θψ γ γ ϕ
ϕ

ψ+ − − + − − + − + −
= +

− −

ɺ ɺ ɺ ɺ ɺ

ɺ
ɺ ɺ

ɺ
r z z xz x xz x y z z z y xz xz z z xz

x z xz x z xz

J I I I I I I I I I I I I I u I u

I I I I I I
 

( ) ( ) ( )2 2 21 2 
        θθ

γ
ϕψ ψ ϕ ψσ ϕσ θ

− −
= − − + − + −ɺ ɺ ɺ ɺɺ ɺ ɺ ɺ ɺz x c cxz r

x z

y y y y y

I I u z u xI J

I I I I I
 

( ) ( ) ( ) ( )2 2 2 2
4 3

2 2

                           
 

     
ϕ ψ

θ σ σ θψ θϕ γ ϕ γ ψ
ψ

+ + − + + − + − − −
= +

− −

ɺ ɺ
ɺ

ɺ ɺ ɺ ɺ ɺ
ɺ r x x xz z xz x y z x x y xz xz x xz x

x z xz x z xz

J I I I I I I I I I I I I I u I u

I I I I I I
 

(29) 

In the mathematical modeling of the system, four control inputs are determined; the total thrust forces in the x-direction of the 
local coordinate system 1( ),u  the total thrust forces in the z-direction 2( ),u  the torques applied to the Bx  and Bz  axes by the 
propellers, represented by )4( 3= →iu i . Equation (30) represents the relationships between the considered inputs and the rotational 
speeds of the propellers can be obtained as: 

[ ] 2

4 1 4 1
 ω

× ×
 =   i iu A  (30) 

2
1 1 1

2
2 2 2

2
3 1 1

2
4 2 2

0 0  

0 0

ω

ω

ω

ω

   
   
   
    =     − −    
    − −          

u b b c

u b b c

u d d bl bl s

u bl bl d d s

 (31) 

where l is the distance between the center of gravity of the Bi-rotor and the axis of each rotor. 
To calculate the rotor speeds and their rotational angles based on the control inputs, the inverse matrix equation (31) is used as 

follows: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2 2 2 2 2

2 2 2 2 2 2

1

2 2 2 2 2 2

2 2 2 2 2 2

1
0

2 2   2  

1
0

2 2   2  

1
0

2 2   2  

1
0

2 2   2  

−

 
 −
 + + 
 
 − + + 
 =  
 − − + + 
 
 
 
 + + 

d bl

b b l d b l d

d bl

b b l d b l d
A

bl d

b b l d b l d

bl d

b b l d b l d

 (32) 

Based on equations (31) and (32), the rotor speeds and the rotational angles are calculated as follows: 

( ) ( )
2 2
,1 2 ,1 

         1 2ω
++

= = →
i i

i

R R
i

b
 (33) 

( )( ) ( )2 2
,12 ,12  ,       1 2θ += = →i iiatan R R i  (34) 

In equations (33) and (34), iR  can be calculated as follows: 

[ ] [ ]1

4 1 4 1
 −

× ×
=i iR A u  (35) 

 

3. State Space Representation 
 

The independent state variables of the system, which include position, Euler angles, and their derivatives with respect to time, 
are defined as .[ ]ϕ ϕ θ θ ψ ψ= ɺ ɺɺ ɺɺ ɺ TX x x y y z z  

The system's state vector is as follows:  

[ ]1 2 3 4 5 6 7 8 9 10 11 12=
T

X x x x x x x x x x x x x  (36) 

By substituting the state variables into the system's dynamic equations (29), the system's state space can be written as follows: 

( ) ( )= +ɺX F X G X U  (37) 

where, 
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( ) ( )
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
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a x x a x x a x x a x

a x x a x x a x a x a x a x

X g x
m
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x
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f



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 
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 
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 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (38) 

( ) [ ]1 2 3 4 12 4×
=G X G G G G  (39) 

which includes the following elements: 

[ ]1 4 5 6 100 0 0 0 0 0 0 0= −
T

cG g g g a z  (40) 

[ ]2 1 2 3 100 0 0     0 0 0 0 0= −
T

cG g g g a x  (41) 

[ ]3 0 0   0 0   0     0 0  1 0     0 0 0=
T

G  (42) 

[ ]4 0 0   0 0   0     0 0  0 0     0 0 1=
T

G  (43) 

in which, 

( ) ( ) ( ) ( ) ( )( )1 7 11 9 7 11

1
 

 = +  
g cos x cos x sin x sin x sin x

m
 

( ) ( ) ( ) ( ) ( )( )2 7 9 11 11 7

1
 

 = −  
g cos x sin x sin x cos x sin x

m
 

( ) ( )3 7 9

1 =   
g cos x cos x

m
 

( ) ( )4 9 11

1 =   
g cos x cos x

m
 

( ) ( )5 9 11

1 =   
g cos x sin x

m
 

( )6 9

1 =   
g sin x

m
 

(44) 

Furthermore, the control input matrix is as follows: 

[ ]1 2 5 6=
T

U u u u u  (45) 

in which, 

5 2 1 3

6 11 2 4

     −     =     −     

u a a u

u a a u
 (46) 

The following matrix represents the parameters in the state-space equations of the system in terms of the moments of inertia 
of the Bi-rotor as: 

( ) ( ) ( )

( )

2 2

1 2 3 4 5 6 7

2 2

2 
8 9 10 11 12 13

         
; ; ; ; ; ; ;

   1
; ; ; ; ; ;         

=
− −− − − −

= = = = = =

= = = = = = −

+ − −
− −

− +
− − − =

xz x y z xz z y z x z

y

x y x xzx rxz r x
x z xz

y

z xz xz z

y

r r

y

I I I I I I I I I I
a a a a a a a

a a I

I I I J I J

a a a

I

a

I I I IJI J I
a a a a a a a I I I

I I I a a a

 (47) 
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Fig. 4. Bi-rotor control diagram. 

4. Control Algorithm 
 

The Bi-rotor system is characterized as underactuated, with four control inputs and six degrees of freedom. This implies that 
only four degrees of freedom, namely spatial positions (x, y, z), and yaw angle ( ),ψ  can be directly controlled. As shown in Fig. 4, the 
trajectory planner block first determines the desired reference trajectories. Then, the desired values are passed to the position 
control and attitude control units. For simplicity, virtual control inputs ( ),   ,  x y zu u u  are chosen to control the x, y, and z variables. By 
using these virtual inputs, the control input 2u  is computed. Subsequently, the values of ϕc  and θc  are determined in the reference 
attitude determination unit. The input values 1 3 4( ,  ,  )u u u  are determined based on the obtained attitude angles in the Bi-rotor 
attitude controller. In this way, the position of the Bi-rotor is controlled through the attitude control of the Bi-rotor. However, virtual 
control inputs are needed to connect these two parts and control the robot's position. 

As shown in Fig. 4, three virtual inputs ( ),  , x y zu u u  are calculated using the feedback linearization approach, while the other three 
control inputs 1 3 4( ,  ,  )u u u  are generated using the backstepping control method.  

 

4.1. Calculation of roll and pitch angles 
 

As mentioned, only four degrees of freedom of the Bi-rotor, including ( , , , ),ψx y z  are controlled using the system's four control 
inputs. Therefore, for controlling x, y, and z, which do not have separate control inputs according to the Bi-rotor's dynamic 
equations, three virtual inputs are considered as follows: 

( ) 2     ϕ θ ψ ϕ ψ= +xu cos sin cos sin sin u  (48) 

( ) 2     ϕ θ ψ ϕ ψ= −yu cos sin sin sin cos u  (49) 

2cos cosϕ θ=zu u  (50) 

Based on equations (49), (50), and (51), we can write: 

cos   sin
tan  

ψ ψ
θ

+
= x y

c

z

u u

u
 (51) 

( )9cos sin   cos
tan  

ψ ψ
ϕ

+
= s x y

c

z

x u u

u
 (52) 

As a result, from equations (52) and (53), we have: 

1 cos   sin
tan

 

ψ ψ
θ −

 +  =    
x y

c
z

u u

u
 (53) 

( )91
cos sin   cosψ ψ

ϕ −
 +   =     

s x y

c

z

x u u
tan

u
 (54) 

Based on the virtual inputs of the system, the control input u2, which is required to control the variable z, it depends on the 
command angles .( ), ϕ θc c  Therefore based on (51), to determine the control input u2 using virtual inputs, we have: 

2 cos cosϕ θ
= z

c c

u
u  (55) 

4.2. The CBFL control method 
 

The Combined Backstepping and Feedback Linearization (CBFL) control method is derived by combining two control methods, 
namely backstepping and feedback linearization control. The combined backstepping and feedback linearization control approach 
offers enhanced performance, expanded control authority, improved tracking performance, and increased robustness compared to 
using backstepping or feedback linearization control algorithms alone. It combines the strengths of both techniques to achieve 
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superior control outcomes in terms of stability, trajectory tracking, and robustness against uncertainties and disturbances. By 
combining these two methods, improved results are attained in terms of convergence to the reference trajectory and the 
minimization of steady-state errors. In this method, three virtual inputs x y z(u ,u ,  u )  are used to stabilize the variables (x,y,z)  using 
the feedback linearizing control method. The control input 2u  is obtained based on zu .  Additionally, three other control inputs 

1 5 6(u ,u ,u )  are calculated using the backstepping control method to stabilize the variables ( , , ).ϕ θ ψ  
 

4.3. Stability proof 
 

4.3.1. Stability of the outer control loop  
 

In contrast to linear control methods, nonlinear control methods encounter multiple constraints and complexities. The process 
of linearization in the dynamic equations of a nonlinear system leads to deviations from its actual model. However, the approach 
based on a linearizing feedback, which draws inspiration from linear control methods, involves the transformation of nonlinear 
differential equations into a linear differential equation accompanied by a nonlinear algebraic equation. By applying feedback 
linearization control, the system can be controlled without the need for linearization in the system equations. The dynamic 
equations of the systems, excluding uncertainties and disturbances, are expressed as follows : 

( ) ( )X , ,= +ɺɺ ɺ ɺF X X G X X U  (56) 

Proposition: Control law (58) stabilizes the dynamic system (57) around the reference trajectories. 

( ) ( ) ( ) ( ) ( ){ }0

1
X     ,

,
τ= + − + − + − −∫ɺɺ ɺ ɺ ɺ

ɺ

t

r D r P r I rU k X X k X X k X X d F X X
G X X

 (57) 

where rX  is the vector of desired system trajectories, t is the flight duration, and P D I(k ,  k ,  k )  are the proportional, derivative, and 
integral control gains, which are always assumed to be positive. 

Proof: In equation (57), Xɺɺ  is considered as follows: 

( ) ( ) ( )X  X     ,= + − + − −ɺ ɺɺ ɺ ɺɺ ɺ
r D r P rk X X k X X F X X  (58) 

The error function is defined as re X X,= −  its first derivative with respect to time as re X X,= −ɺ ɺɺ  and its second derivative as 

re X X.= −ɺɺ ɺɺɺɺ  Therefore equation (57) can be transformed into the following equation: 

0
    0τ+ + + =∫ɺɺ ɺ

t

D P Ik e k e de k e  (59) 

By taking the time derivative of equation (60), the following equation can be obtained: 

    0+ + + =ɺ ɺɺɺɺɺ
D P Ie k e k e k e  (60) 

The characteristic equation of this expression can be written as: 

3 2 0λ λ λ+ + + =D P Ik k k  (61) 

All the closed-loop system poles will be chosen on the left of the imaginary axis using appropriate control gains. Therefore, the 
asymptotic stability of the closed-loop system for its variables under the feedback linearization control method is proven using the 
Lyapunov method. 

The control inputs accordingly are calculated as follows: 

( )1 9 11 2  cos cos        =− + + +ɺɺ
x c Dx x Px xu u x x m x k e k e  (62) 

( )1 9 11 4  cos sin          =− + + +ɺɺ
y c Dy y Py yu u x x m x k e k e  (63) 

( )1 9 6     sin            = + + + +ɺɺ
z c Dz z Pz zu u x mg m x k e k e  (64) 

4.4. Inner loop control 
 

In the inner loop control of the system, the backstepping method is employed to stabilize the system variables around desired 
trajectories. Based on the introduced control strategy, the state variables of the system ( , , )φ θ ψ  are stabilized around ( , , )ϕ θ ψc c r  using 
stable system inputs, 

2 1 2− =ɺ
i ix x  (65) 

( ) ( )2 1 2 2− = +ɺ
ki i ix f X g X u  (66) 

where i 3 6= →  and { }k 1,3,4 .∈  
Theorem: Control law (68) stabilizes the dynamic system (29) around the reference trajectories, 

( )
( ) ( )2 2 1 2 2 1 2 2 1 2 1 2 2

2

1
  − − − −
 = + − − + − ɺ

k ir i i i i i i i i

i

u x e f X c e c e c e
g X

 (67) 

where ( )ie i 1 12  = → are error signals and ( )ic i 1 12= →  are positive control gains. 
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Proof: Firstly, the error functions for the control of the odd-numbered state variables of the system are defined as follows: 

( )2 1 2 12 1− −−= −i ii re x x  (68) 

where ( )2i 1 rx  (i 1 6)− = →  are the desired signals The candidate Lyapunov function to stabilize these error signals is defined as 
follows: 

2
2 1

1
2 −=i iW e  (69) 

The first derivative of this error function with respect to time is calculated as follows: 

( )( )2 1 2 1 2 1 2 12 1− − − −−= = −ɺ ɺ ɺ ɺ
i i i i ii rW e e e x x  (70) 

By utilizing equation (66), equation (71) can be expressed as follows : 

( ) ( )( )22 1 2 1 − −= −ɺ ɺ
i ii i rW e x x  (71) 

To achieve asymptotic stability of the closed-loop system, we can choose: 

( )2 2 1 2 12 1 − −−= +ɺ
i i ii rx x c e  (72) 

Therefore iWɺ  can be calculated as: 

2
2 1 2   1 0− −=− <ɺ

i i iW c e  (73) 

which is a negative definite function. As mentioned, the values 2 1 )i 1( 6− = →ic  are considered to be positive. 
By using this equation, another error function can be defined for controlling the even-numbered state variables of the system 

as follows: 

( )2 2 2 1 2 12 1 − −−= − −ɺ
i i i ii re x x c e  (74) 

according to the system state space equations ( ) 2ir2i 1 r .x x− =ɺ  Therefore the derivative of equation (75) can be obtained as follows: 

2 2 2 2 1 2 1− −= − −ɺ ɺɺ ɺ
i i ir i ie x x c e  (75) 

Furthermore, the derivative of equation (69) can be expressed as follows: 

( )2 1 22 1− −= −ɺ ɺ
i ii re x x  (76) 

By substituting equation (77) into equation (75), we can write: 

( )2 2 1 2   1 2 1− − −=− −ɺ
i i i ie e c e  (77) 

The second Lyapunov candidate function is defined as follows: 

( )2 2
2   1 2

1
2 −= +i i iV e e  (78) 

Its derivative is calculated as follows: 

2 1 2 1 2 2− −= +ɺ ɺ ɺ
i i i i iV e e e e  (79) 

By substituting (76) and (78) into (80), we obtain: 

( ) ( )2 1 2 2   1 2 1 2 2 2 2   1 2 1− − − − −= − − + − −ɺ ɺɺ ɺ
i i i i i i i ir i iV e e c e e x x c e  (80) 

Furthermore, by substituting equations (67) and (78) into equation (81), the following expression is obtained : 

( ) ( ) ( ) ( ){ }2 1 2 2 1 2 1 2 2 2 2 2 1 2 2 1 2 1− − − − − −= − − + + − − − −ɺ ɺ
ki i i i i i i i ir i i i iV e e c e e f X g X u x c e c e  (81) 

To ensure the stability of the state variables around the reference trajectories, i
ɺV  should be negative definite. 

2 2
2 1 2 1 2 2− −=− −i i i i iV c e c e  (82) 

Furthermore, three other control inputs 1 5 6(u ,u ,u )  by combining equations (75) and (76) are calculated as follows: 

2 2
5 5 8 10 6 10 12 3 10 4 10 1 8 2 12                   ϕ ψ ϕσ σ γ γ=− + − − + − +∆x zu a x x a x x a x a x a x a x  (83) 
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( )7 7 8 7 7 8 8               ϕ∆ = − + −e c e c e c e  (84) 

( ) ( )( )2 2 2
1 10 2 8 12 8 7 8 12 9 8 12 10 10

10

1
                               θ θσ σ γ= + − − + − + +∆c z x

c

u a u x a x x a x x a x x a x
a z

 (85) 

( )9 9 10 9 9 10 10           θ∆ = − + −e c e c e c e  (86) 

2 2
6 13 8 10 5 10 12 3 10 12 10 2 8 11 12                   ϕ ψ ψσ σ γ γ=− + + + − + +∆z xu a x x a x x a x a x a x a x  (87) 

( )11 11 12 11 11 12 12               ψ∆ = − + −e c e c e c e  (88) 

5. Obtained Results 
 

The performance of the designed controllers for trajectory tracking of the Bi-rotor was evaluated using MATLAB. In order to 
validate the dynamic modeling of the Bi-rotor, the robot, along with the actuators and system inputs, was modeled in ADAMS 
software. It was then utilized to track the reference trajectory. In this section, the performance of the Bi-rotor system under the 
backstepping and CBFL control methods are compared, with the control strategy shown in Fig. 4 being used for the CBFL control 
method. The system parameters and the information related to the controllers are gathered in Table 1. The control parameters are 
given in Table 2. 
 

5.1. ADAMS/MATLAB CO-simulation 
 

The co-simulation with Adams serves as a valuable tool to validate the modeling and control approach. While the study has 
limitations, such as simplified assumptions, potential model inaccuracies, idealized controller tuning, and the absence of hardware-
specific factors, co-simulation with Adams offers several advantages. It enables comprehensive validation of the dynamic model, 
considering real-world factors and enhancing the accuracy and realism of the simulation. Adams provides advanced capabilities 
for evaluating system performance and dynamic behavior. Moreover, co-simulation facilitates by integrating control algorithms 
with the mechanical aspects of the system. By leveraging the capabilities of Adams, the simulation study can provide valuable 
insights and validation for the modeling and control approach. Hence, the Adams software is utilized for simulation in order to 
validate the dynamic modeling of the Bi-rotor robot [24, 25]. For model validation as an initial step, the robot's physics equations 
can be examined using highly accurate dynamic analysis software. In this article, a 3D model of the Bi-rotor is designed using 
SolidWorks software for validation purposes. Subsequently, this model is imported into the ADAMS software to determine the 
mechanical constraints and connections. 

Upon transferring the Bi-rotor to the ADAMS software and defining the mechanical constraints and connections for joint 
simulation between ADAMS and MATLAB, the ADAMS/MATLAB CO-simulation block diagram is generated in the Simulink 
environment, depicted as Fig. 6. 

Table 1. Bi-rotor parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Control parameters. 

Control method  Control gains Parameter Value 

Backstepping 

H = 3 

K = 2 

Q = 0.5 

[c1, …, c12] [Q, K, Q, K, H, H, 4, 4, H, H] 

CBFL 

Proportional [Kpx, Kpy, Kpz] [2, 2, 2] 

Derivative [Kdx, Kdy, Kdz] [2, 2, 3] 

Integral [Kix, Kiy, Kiz] [0, 0, 0, 0, 0, 0] 

Stabilizing gains [c7, …, c12] [5, 6, 5, 6, 5, 6] 

Description Parameter Value Unit 

Gravity acceleration g 9.806 m/s2 

Bi-rotor Mass m 5.549 kg 

The distance between the rotors and the center of mass of the Bi-rotor along the XB axis. xc 7.57810-3 m 

The distance between the rotors and the center of mass of the Bi-rotor along the YB axis. yc 0.782 m 

The distance between the rotors and the center of mass of the Bi-rotor along the ZB axis. zc 3.03910-2 m 

The moment of inertia of the Bi-rotor around the XB axis. Ix 1.161 N.m.s2 

The moment of inertia of the Bi-rotor around the YB axis. Iy 0.032 N.m.s2 

The moment of inertia of the Bi-rotor around the ZB axis. Iz 1.135 N.m.s2 

The moment of inertia of the Bi-rotor with respect to the XBZB plane. Ixz -2.17310-3 N.m.s2 

The moment of inertia of the rotor. Jr 4.02110-4 kg.m/rad2 

Thrust coefficient B 1.41710-4 kg.m/rad2 

Torque coefficient D 2.06210-6 kg.m/rad2 

Air density ρ  1.184 kg/m3 

Propeller radius R 0.3 m 

Propeller area A 28.310-2 m2 

Lift coefficient CT 0.0047 _ 

Drag coefficient CD 0.22810-3 _ 
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Fig. 5. 3D model of the Bi-rotor in ADAMS software. 

 
Fig. 6. Block diagram generated for ADAMS/MATLAB CO-simulation. 

 
Fig. 7. Circular trajectory tracking. 

5.2. CO-simulation results 
 

In this section, the joint simulation addresses the tracking of a circular trajectory using the CBFL control method and the 
reference path equations (90). The flight time for the Bi-rotor to complete one revolution along the circular trajectory is 
approximately 50 seconds, starting from the moment it takes off from the ground, 

10sin
8

=r

t
X  

10cos
8

=r

t
Y  

3=rZ  

(89) 

The motion of the Bi-rotor under the CBFL control method and the trajectory followed by the robot are depicted in Fig. 7. 
The CBFL control method, using the parameters given in Table 3, is employed in the simulation for circular trajectory tracking. 

Figure 7 shows that the Bi-rotor accurately follows the reference trajectory. 
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Table 3. Parameters of the controllers in co-simulation. 

Control Method Control Gain Parameter Value 

CBFL 

Proportional Gains [Kpx, Kpy, Kpz] [2, 2, 2] 

Derivative Gains [Kdx, Kdy, Kdz] [2, 2, 3] 

Integral Gains [Kix, Kiy, Kiz] [0, 0, 0, 0, 0, 0] 

Backstepping Gains [c7, …, c12] [5, 6, 5, 6, 5, 6] 

 

 
The comparison of system errors in tracking a circular trajectory using the Adams software provides a deeper understanding of 

the system dynamics. Figures 8 and 9 demonstrate that the error signals obtained from the system's mathematical model align 
closely with the error signals obtained through the Adams software simulation. During the initial phase of motion, the rotor 
increases its roll angle (φ) to initiate movement in the y-direction. As a consequence of this roll angle increase, there is a slight 
oscillation observed in the pitch angle. This oscillation is a result of the interplay between the rotor's roll and pitch motions. To 
achieve accurate path tracking in the x-direction, the tilt angles experience an initial increase. This response is necessary to ensure 
that the robot moves along the desired trajectory. By adjusting the tilt angles, the robot can effectively control its position in the x-
direction, aligning itself with the circular path. As the robot approaches the desired altitude, corrective measures are taken to 
maintain stability. The roll and tilt angles are adjusted in the opposite direction to reduce the speed of the robot's motion. This 
adjustment is crucial in preventing overshooting and ensuring that the robot reaches and maintains the desired altitude with 
stability. By carefully managing the roll and tilt angles, the system can effectively control its trajectory, minimizing errors in tracking 
the circular path. These adjustments play a critical role in maintaining stability throughout the motion and ensuring precise path 
tracking. The comparison between the system's mathematical model and the Adams software simulation highlights the 
effectiveness of the control strategy in achieving accurate trajectory tracking. 

 
5.3. Trajectory tracking control 

 

The comparative analysis of the control methods for the Bi-rotor system provides valuable insights into their performance 
during circular trajectory tracking. In this section, a Bi-rotor starts its motion from the reference point (0,0,0) on the ground to 
pursue a circular path at the height of ten meters using the control methods with the reference trajectory (90):  

 10sin
8

=r

t
X  

 10cos
8

=r

t
Y  

 10=rZ  

(90) 

It is assumed that approximately 50 seconds are allocated for the Bi-rotor to complete one full circle of the circular trajectory, 
starting from the moment it lifts off the ground. Figure 10 illustrates the Bi-rotor's motion under these control methods. 

Figure 11 illustrates the Euler angle variations for the CBFL, backstepping, and feedback linearization control methods. Figure 
12 portrays the position errors, which are defined as ( )x re x x ,= −  ( )y re y y ,= −  and ( )z re z z= −  for CBFL, backstepping, and 
feedback linearization control methods. 

As depicted, the initial phase of motion is characterized by an increase in the Bi-rotor's tilt angle (φ) to attain maximum speed. 
As the Bi-rotor approaches the target altitude, it performs a controlled rotation in the opposite direction around the roll angle. This 
adjustment is crucial for reducing the speed and ensuring stability at the desired altitude. The CBFL method showcases efficient 
control in this aspect, enabling quick and precise modifications of the tilt angles. It is observed that the CBFL method exhibits faster 
and smoother variations in the roll angle compared to the other control methods. This indicates that the CBFL approach can achieve 
more precise control and stability during the Bi-rotor's motion. Also, the CBFL method demonstrates superior performance, as it 
exhibits smaller position errors compared to the backstepping and feedback linearization methods. This implies that the CBFL 
method can accurately track the circular trajectory with minimal deviations. Figure 13 depicts the control inputs of the Bi-rotor 
under CBFL, backstepping, and feedback linearization control methods. 

  
Fig. 8. Comparison of variations in Euler angles. Fig. 9. The comparison of variations in Bi-rotor Euler angles. 
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(b) CBFL method (a) Backstepping approach 

Fig. 10. Circular trajectory tracking for Bi-rotor using CBFL and Backstepping control methods. 

  

Fig. 11. Comparison of Euler angle variations. Fig. 12. Comparison of error signals. 

 
Fig. 13. Comparison of control inputs in Bi-rotor for circular trajectory tracking. 

Further analysis in Fig. 13 reveals the control inputs for the Bi-rotor under each control method. The CBFL method exhibits 
smaller input values compared to the backstepping method, indicating a more efficient utilization of control resources. Despite 
these smaller inputs, the CBFL method induces faster changes in the Euler angles of the Bi-rotor. This leads to smoother and less 
oscillatory control inputs, highlighting the effectiveness of the CBFL method in achieving stable and precise control. Figure 14 
illustrates the variations in tilt angles for circular trajectory tracking in the CBFL, backstepping, and feedback linearization control 
methods. 

As can be seen, Fig. 14 focuses on the variations in the tilt angles during circular trajectory tracking. The oscillation levels 
observed in the tilt angles suggest that the CBFL method can effectively minimize these oscillations compared to the backstepping 
method. The faster response of the CBFL method in adjusting the tilt angles contributes to smoother flight dynamics, reducing 
undesirable fluctuations during the Bi-rotor's motion. 
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Fig. 14. Variations in tilt angles in circular trajectory tracking. 

  
(a) Backstepping control (b) CBFL control 

Fig. 15. Tracking paraboloid hyperbolic reference trajectory. 

In summary, the comparative analysis of the control methods highlights the advantages of the CBFL approach in circular 
trajectory tracking for the Bi-rotor system. The CBFL method demonstrates faster, smoother, and more precise control, resulting in 
reduced position errors, smaller control inputs, and minimized oscillations in the tilt angles. These findings provide valuable 
insights for optimizing the control strategy of the Bi-rotor system to enhance its performance and stability. 
 

5.4. Tracking paraboloid hyperbolic reference trajectory 
 

In this section, for following a paraboloid hyperbolic trajectory using control methods, including backstepping control, feedback 
linearization, and a hybrid combination of both approaches (CBFL). The reference path originates from the reference point (0,0,0) 
on the ground, as defined by equations: 
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(91) 

Under these control methods, the flight time for the Bi-rotor, from takeoff to completion of one round of the paraboloid 
hyperbolic path, is approximately 50 seconds. The motion of the Bi-rotor under these control methods is depicted in Fig. 15. 

Figure 15 visually depicts the precise guidance of the Bi-rotor toward the reference trajectory. Initially, as the Bi-rotor embarks 
on its motion, the roll angle ( )ϕ  increases to facilitate movement in the y-direction. Simultaneously, the tilt angles are adjusted to 
achieve maximum speed in the x-direction. As the Bi-rotor approaches the target altitude, a controlled rotation in the opposite 
direction around the roll angle is executed. This maneuver serves to reduce speed and ensure stability at the intended height. 

To evaluate the performance of the control methods, the position and orientation errors are analyzed in Fig. 16 and Fig. 17, 
respectively. 

Figure 16 provides a comparison of the position errors along the paraboloid hyperbolic path for the Bi-rotor. Notably, the CBFL 
method demonstrates superior performance, exhibiting reduced steady-state attitude errors when compared to the backstepping 
and feedback linearization methods. This implies that the CBFL method can achieve more accurate positioning along the paraboloid 
hyperbolic trajectory, resulting in improved tracking capabilities. 

Figure 17 illustrates the variations in Euler angles for the Bi-rotor. It can be observed that the CBFL method outperforms the 
other control methods, showcasing smoother and more stable variations in the Euler angles. This indicates that the CBFL method 
can effectively regulate the orientation of the Bi-rotor, ensuring precise control throughout the trajectory.  

Figure 18 compares the variations of control inputs over time for all three control methods (backstepping control, feedback 
linearization, and CBFL) in tracking the paraboloid hyperbolic trajectory. 
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Fig. 16. The comparison of Bi-rotor position errors along the 

paraboloid hyperbolic path. 
Fig. 17. The comparison of variations in Bi-rotor Euler angles. 

 

 
Fig. 18. Control inputs for the Bi-rotor in tracking the paraboloid hyperbolic trajectory. 

 
Fig. 19. Bi-rotor tilt angle variations in paraboloid hyperbolic trajectory tracking. 

Furthermore, Fig. 18 focuses on the control inputs required by the Bi-rotor for tracking the paraboloid hyperbolic trajectory. 
Comparing the three control methods (backstepping control, feedback linearization, and CBFL), it is evident that the backstepping 
control method demands larger control inputs compared to the other two methods. In contrast, the CBFL method demonstrates 
efficient control with smaller input values. This highlights the superior control capabilities of the CBFL method in guiding the Bi-
rotor with less aggressive adjustments. 

The time-history of tilt angles for the three control methods is depicted in Fig. 19. 
It is apparent that the backstepping control method necessitates larger tilt angle adjustments for the Bi-rotor to align with the 

desired reference trajectory. On the other hand, the CBFL method exhibits smaller variations in tilt angles, indicating smoother and 
more stable flight dynamics. A numerical comparison among all three control methods for the Bi-rotor along the paraboloid 
hyperbolic reference trajectory is presented in Table 4. 
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Table 4. Numerical comparison among all three control methods.  

CBFL Feedback linearization method Backstepping Method  

9231 8892 9255 
50

2

1
0

dt∫ u  

1.489105 1.431105 1.494105 
50

2

2
0

dt∫ u  

0.0095 0.056 0.173 
50

2

0
dt∫ x

e  

95.22 197.7 111.8 
50

2

0
dt∫ y

e  

95.31 182 84.09 
50

2

0
dt∫ z

e  

190.5395 379.756 196.063 
50

2

0
dt∫ e  

 
The numerical comparison presented in Table 4 confirms the findings observed in the circular reference trajectory analysis. The 

CBFL method demonstrates lower positional errors compared to the feedback control method, as similar thrust forces are generated 
through the propellers. Additionally, the CBFL method experiences fewer oscillations in error variations, further highlighting its 
effectiveness in trajectory tracking for the Bi-rotor system. 

In summary, the comprehensive analysis of the control methods for the Bi-rotor system along the paraboloid hyperbolic 
trajectory reveals the superiority of the CBFL method. The CBFL method not only reduces position and orientation errors but also 
requires smaller control inputs and induces smoother tilt angle variations. These findings underscore the effectiveness of the CBFL 
method in achieving precise trajectory tracking with enhanced stability and control for the Bi-rotor system. 

 
6. Conclusions 

 

This paper provided a comprehensive analysis of the modeling, control, stability analysis, and flight capabilities of the Bi-rotor 
system, with a focus on accurate trajectory tracking. Suitable control methods and gains were applied to achieve precise 
performance with minimal steady-state errors. The chosen control approaches demonstrated their effectiveness in ensuring 
accurate trajectory tracking. The dynamic model of the Bi-rotor was validated using a Co-Simulation approach, integrating ADAMS 
and MATLAB, which rigorously verified its accuracy and reliability. The proposed control strategy not only showcased its 
effectiveness in trajectory tracking but also held promising potential for addressing other control problems such as obstacle 
avoidance and control in the presence of external loads. The main achievements of this work included a validated dynamic model, 
effective motion regulation, stability analysis using the Lyapunov method, and contributions to the advancement of attitude and 
position control in Bi-rotor drones through nonlinear control techniques. The findings of this study have significant implications 
for the field of aerial robotics and offer potential applications across various industries. 
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