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Abstract. This paper is devoted to presenting the results of the computer-aided design, the multibody dynamic anal-
ysis, and the proportional-derivative control synthesis of an adaptive mechanism serving as a lifting table. More
specifically, the first part of the manuscript deals with the methodological approach and the mathematical back-
ground employed in the entire research work, whereas the second part of the present paper is focused on the model
development and the numerical experiments carried out in this investigation. The analytical derivations presented
herein demonstrate that the desired adaptive behavior can be successfully obtained for the virtual prototype of the
lift mechanism devised in this investigation. Furthermore, a detailed CAD model of the proposed design was con-
structed in this investigation using SOLIDWORKS. To this end, particular attention was paid to the actual assembly
and disassembly of each mechanical component, in conjunction with the choice of the actuators and sensors that
are necessary for the proper functioning of the lifting mechanism. Then, a three-dimensional multibody model was
developed starting from the CAD model of the virtual prototype devised in this investigation. The resulting multi-
bodymodel, following appropriate simplifications, was subsequently imported into the MATLAB virtual environment,
thereby allowing for readily performing kinematic and dynamic simulations of the nonlinear behavior of themechan-
ical system under study by using the SIMSCAPE MULTIBODY computational software. By doing so, the development
of an appropriate control strategy, as well as the analysis of its behavior under loading and unloading goods condi-
tions, was carried out and tested in the case of four different scenarios considered as the case study. For this purpose,
the applicative scenarios considered are: 1) an impulsive loading scenario; 2) a progressive loading scenario; 3) an
impulsive unloading scenario; 4) and a progressive unloading scenario. The performance of the feedforward plus
feedback control strategy devised in this study was discussed based on several computer simulations. Numerical
simulations demonstrate that the desired adaptive behavior is successfully obtained for the virtual prototype of the
lift table designed in this study.

Keywords: Computer-Aided Design, Ergonomics, Manual Material Handling, Adaptive Mechanism, Multibody Dynamic Analysis,
Feedforward and Feedback Control Design.

1. Introduction

1.1 General Background and Main Significance of the Present ResearchWork

This paper deals with the virtual prototyping of an articulated mechanical system serving as an adaptive lifting platform for
ergonomically enhancing the heavy material handling carried out by human operators. In the remaining parts of this section, the
background of the research topic, the definition of the problem of interest for this research work, a discussion of the literature
concerning the issues at hand, the contributions of the present research, and the organization of the entire manuscript are reported.

In modern industrial engineering applications, the synergistic use of Computer-Aided Design (CAD) programs and Computer-
Aided Engineering (CAE) software represents a problem of paramount importance [1, 2]. In this vein, the Integration of Computer-
Aided Design and Analysis (I-CAD-A) is playing a fundamental role in the general field of mechanical engineering [3]. To address
this complex problem, the multibody approach to the kinematic and dynamic analysis of articulated mechanical systems turned
out to be an effectively viable solution. In this paper, therefore, the multibody approach to the analysis of constrained mechanical
systems is adopted [4–6]. The analysis of the mechanical system considered as the case study of this work was carried out in
the MATLAB computational framework by using the software called SIMSCAPE MULTIBODY,which has a 3D simulation environment
capable ofmodeling articulatedmechanical systems. In the dynamic analysis ofmultibodymechanical systems, the complex task of
automatically deriving the differential-algebraic equations ofmotion starts from theCADdesign of the systemof interest [7,8]. In this
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vein, geometricmodeling is achieved by using computer-aided design programs,which are specifically devised to ease the creation of
complex geometric forms that are mathematically based on the NURBS (Non-Uniform Rational Basis-Splines) representation [9,10].
Thus, it is clear that, in mechanical engineering applications, the synergy between computer-aided design and analysis tools has a
fundamental role [11,12].

In this investigation, the controller architecture used to control the analyzed system is of the Proportional Derivative (PD) type.
In the research and development of novel control systems in general, the use of benchmark problems is fundamental for analyzing
the quality of any newly proposed control strategy. Besides, this allows for comparison with other existing solutions for control
systems. Furthermore, because of their simple structure, ease of implementation, and active research in the parameters tuning,most
of the control systems that are implemented to date in engineering systems employ Proportional-Integral-Derivative (PID) control
schemes [13,14]. Typically, the original technology for industrial PID controllers features a very simple interface for manually tuning
the parameters of the controller. The PID tuner was indeed known to have a process control interface comprising three simple dials
markedwith P, I, andD, respectively. This reflected the fact that, formany of the simple processes found in themechanical industries,
a manual procedure for tuning the parameters of the PID controller was often quite adequate. One of the great strengths of the PID
controllers is that, for simple plants, there are straightforward correlations between the system responses and the adjustment of
the three terms in the controller.

In the process of the design and synthesis of a PID controller, the tuning procedure is composed of two fundamental steps. The
first step deals with the selection of the structure of the PID controller, that is, which terms should be included in the controller.
The second step is focused on the proper definition of the numerical values of the PID control parameters, which must be suitable
for tuning the functioning of the control system. As expected, when using and tuning PID controllers, the key aspect is related to
the second step mentioned before, namely the proper definition of its control coefficients. This problem can be empirically solved
by a skilled human operator, who should be able to leverage his/her knowledge, experience, and intuition to identify the proper set
of parameters of the PID controller. However, this is a nontrivial task and, therefore, some aiding tools are necessary to address
this issue. A general and viable criterion useful for this purpose is represented by the well-known Ziegler-Nichols technique, which
offers a method for iteratively determining the parameters of the PID controller [15]. The literature on the selection of the proper
parameters of PID controllers is very wide, and the methods used are mainly semi-empirical [16].

When computers appeared, together with them came Programmable Logic Controllers (PLCs), Supervisory Control And Data
Acquisition (SCADA) systems, and Distributed Control Systems (DCSs). Thus, automated tuning or autotuning methods for PID
controllers were introduced [17, 18]. The autotuning techniques implemented in the systems mentioned before were devised to
adjust the parameters of a PID controller in an automaticmode featuring probing influences, either once or upon the specific request
of the operator. Usually, the probing influences interfere with the regular operating condition of the Control Object (CO). As a result,
the autotuning process actually takes place during the remaining short time that has been set aside for it, that is, when the operation
with the current PID controller becomes impossible or when the processor boots up. However, the optimal control parameters of
many COs are nonstationary and tend to drift over time [19, 20]. Consequently, the main goal of the regulation system cannot be
achieved by the implementation of a controller that was tuned only once during the full CO operation. In order to properly adjust the
CO parameters in away that the control objective is always accomplished over time, onemust tune the coefficients of a PID controller
continuously or, at least, periodically. To solve this important issue, the adaptive control strategy can be adopted. Depending on the
specific approach used in this strategy, adaptive control algorithms require to implementation of constant or periodic modifications
to the PID controller coefficients, which can be also performed in conjunction with the use of applied system identification methods
necessary for refining the mathematical model of the dynamical system to be controlled.

In this work, the fundamental idea that stands behind the adaptive control approach mentioned before is employed. Thus, to
guarantee proper guidance of the motion of the lifting mechanism in different scenarios of engineering interest, multiple sets of
optimal or refined control parameters are devised.

1.2 Formulation of the Specific Problem of Interest for this Investigation

In industrial applications, the scissor lift mechanism is a mechanical system commonly used for several standard and nonstan-
dard applications. This is the ideal tool for lifting goods and people with the smallest footprint occupied [21, 22]. This mechanical
system consists of a horizontal platform that lifts vertically with ease, thereby allowing for reaching raised floors, or, as in the case
considered in this paper, facilitating access to the desired objects without loading problems. Therefore, analysis of the scissor lift
mechanism and the design of an adaptive lift table is the object of the present research work. A short discussion concerning the
industrial use of this mechanical system, as well as the computer-aided design and analysis methods useful for modeling and sim-
ulating this type of system, is provided herein.

Multibody System Dynamics (MBD) is grounded in a large body of knowledge of research of engineering interest [4,23,24]. This
scientific discipline dealswith the development of analytical and computationalmethods for describing rigid andflexiblemechanical
systems, their application to the analysis and synthesis of articulated systems, and the implementation of experimental procedures
necessary to validate their theoretical foundations [7, 8]. In modern engineering applications, multibody systems have been used
to simulate a vast number of physical systems, such as robots, mechanisms, chains, cables, space structures, and biomechanical
systems [25,26].

Multibody systems are articulated mechanical systems composed of collections of rigid and/or deformable bodies, kinematic
joints and/or driving constraints, force elements and/or force fields, and external actions and/or control inputs [27, 28]. From both
the kinematic and dynamic points of view, multibody mechanical systems exhibit complex behavior [14,29]. This is due to the pres-
ence of high nonlinearities in the kinematic and dynamic equations describing the motion of this family of mechanical systems.
The nonlinear nature of the multibody equations of motion is induced by the capacity of capturing large reference displacements
and large finite rotations [6, 30, 31]. Consequently, general analysis approaches are required to be able of describing the dynamic
behavior of a general multibody mechanical system such as the articulated lifting mechanism analyzed in this paper [32,33].

As can be intuitively imagined, the problem of the dynamic analysis of rigid-flexible multibody systems is strongly related to
the design of proper control strategies for this category of mechanical systems [34–36]. To solve the optimal control, estimation,
and identification problems associated with machines and mechanisms of engineering interest, it is crucial to correctly formulate
the dynamic equations that characterize the nonlinear behavior of multibody systems [37–39]. In this respect, it is well-known that
the conventional algorithms based on the linearization of the equations of motion are inappropriate for controlling the nonlinear
behavior of multibody systems [40,41]. As a result, more sophisticated design methods, estimation procedures, and control strate-
gies must be employed to address this issue. In recent mechanical engineering applications, various studies focused on the active
and passive control problems of machines and structures have appeared. For instance, considering the mathematical techniques
developed in the field of system identification and optimal control, several studies can be found in the literature [42–45].

In the design of proper control actions for guiding the motion of nonlinear mechanical systems, specific formulation procedures
and computational strategies must be employed [46,47]. The solution to the guidance and control problem, which can be separated
into the two categories of regulation and tracking control, is particularly challenging in the case of rigid and flexible multibody sys-
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tems. Before trying to develop a new control policy for an articulated mechanical system, one first needs to construct a reliable
dynamic model of the system of interest, which must be intrinsically capable of mathematically describing its nonlinear physical
features. By using the analytical approaches and computational methodologies available in the literature, the control design pro-
cess associated with the regulation and tracking problems of the nonlinear mechanical system of interest can be addressed and
solved [48,49].

1.3 Literature Review and Comparative Study

Lifting tables are commonly used in industry for facilitating heavy material handling. Geometrically, these mechanisms are
constructed by employing a scissor topology, in which the purpose of the cross bars is to transform a horizontal motion of the
actuator into a vertical motion of the table. A concise literature survey about the issues associated with the design and analysis of
this kind of mechanical system is reported below together with a comparative discussion on the principal solutions found in the
literature.

In the literature, the discussion about several engineering problems related to the proper design, functioning, and control of
this type of articulated mechanical system can be found. In [50], Momin et al. analyzed the design and manufacturing processes of
hydraulic scissor lift systems, in which the desired displacement is indeed achieved by employing hydraulic or pneumatic actuators.
As shown in the work of Ismael et al. [51], which is concerned with electrical lifting tables, ball-screw motor transmissions are also
used to guide the motion of scissor lift tables. Mainly focusing on CAD modeling, Hongyu and Ziyi designed a new scissor table
for ensuring the stability and safety of human workers during the operation of this mechanical system, which could turn out to be
potentially dangerous [52]. In [53], Akgun et al. proposed a finite element analysis of the spatial scissor-hinge structural mechanism
designed in their work to improve the structural reliability of this system, which can hardly be obtained by adopting only simple
geometric considerations. Following the same line, Mohan and Zech analyzed the main characteristics of worker accidents due to
the instability of scissor lift tables. Liu and Sun performed several dynamical simulations using SIMULINK to reach the optimal and
stable design of a scissor-lifting mechanism [54]. In [55], Olenin addressed the design of hydraulic scissor lifting tables focusing
on the modulation of the actuation force to ensure system stability and safety. Li et al. analyzed the influence of the clearance
present between the parts, the friction forces, and the contact reactions in the context of the dynamic analysis of lifting tables [56].
While several interesting research studies concerning the robust design and functional optimization of lift tables can be found in
the literature, the attention paid to the human-machine interaction from an ergonomic viewpoint is quite restricted to a few cases.

Industrial jobs that require Manual Materials Handling (MMH), especially the lifting of loads carried out by human operators,
have an increased incidence of back injury cases [57]. Overexertion injuries are usually linked to occupational risk factors such
as moving large, heavy, and bulky goods from the ground or lifting products repeatedly and frequently [58, 59]. For years, the risk
of Low Back Disorders (LBDs) has been associated with a combination of five measures representing both workplace and trunk
motion factors [60], which are occupationally related. In particular, the load moment and the lifting frequency are the principal
workplace factors. On the other hand, the lateral trunk velocity, the twisting trunk velocity, and the sagittal flexion angle are the
main trunk motion factors, where a variation of the sagittal flexion angle takes place in the case of trunk flexion [61]. Consequently,
as the magnitude of each of these variables increases, the accident and injury risks increase as well. In addition, another prominent
problem comes from the random distribution of loads on uneven surfaces on working sites [62], leading to account for a lot of fatal
accidents due to lifting tip-over. To solve this issue, there are control systems that can be added to the current control mechanism
using an Inertial Measurement Unit (IMU) to measure the tilt angles of the platform, and relays for signal conditioning [36, 63].
However, the problem of proper material handling aided by specifically designed mechanical systems is still an object of research
in the ergonomic literature [64]. This issue represents the main research question to be addressed in this work.

In all fields where the lifting of objects is required, the human operator could potentially suffer from serious problems [65].
Therefore, this is also true for the specific case study analyzed in the current paper, which deals with the loading and unloading
of pallets using a scissor mechanism forming a lift table [66]. The solution devised in this work to avoid back pain is to adopt a
self-leveling mechanism, which allows for keeping the pallet at a constant and ergonomically correct height [58]. This solution must
prove to be suitable for thematerial handling carried out by the operator [60]. When compared to the traditional pallet manipulation
on the floor and nonadjustable pallet tables,which do not guarantee an ergonomic posture for the operator, previous studies provided
evidence that the use of self-leveling scissor lift tables for handling pallets is highly effective at reducing spine loading during de-
palletizing/palletizing tasks [67]. Despite all the high risks for the human operator adopting an incorrect posture in MMH operations,
and even though this practice is very widespread in the industry, the scientific literature concerning this ergonomic issue is very
limited. This is also the case with the specific problem of palletizing/depalletizing goods using a scissor lift mechanism, as well as
the biomechanical research that aims to improve the effectiveness of this device [61]. This paper, therefore, tries to fill this gap in
the literature.

The behavior of the articulated mechanism serving a lift table, which is analyzed in this investigation, is kinematically and
dynamically nonlinear. As shown in several research works in different areas of structural and mechanical engineering, the study
of the mechanical behavior of dynamical systems having a nonlinear nature represents an important topic [68,69]. Many different
scissor lifters are available in the market. Thus, regarding the design of the CAD model of the virtual prototype developed in this
study, several aspects were analyzed, paying attention to the shapes, dimensions, configuration of the components, transmission
mechanism, and actuation systems [50,54,70]. Most lifters use a hydraulic actuator and, to the best of the authors’ knowledge, in no
case was employed a rack and pinion transmission mechanism. Consequently, such a system was chosen in this work. This design
solution was also adopted in this study to facilitate the subsequent development of the control system, which can directly operate
on the electric motors connected to the arms of the lift table by the mechanical transmission. Additionally, in the analysis of the
literature, as well as by observing the final products actually available in themarket, a distinction wasmade between themechanical
components that are quite significantly different from one model to another and those that are more or less identical.

As far as the long-term damages caused to the workers are concerned, the research studies made in the industrial field of
material handling employing lift tables are quite limited [71]. To reduce the spine loads, Ramsey et al. proposed a self-leveling pallet
machine designed to position the loads vertically and horizontally, as well as an adjustable cart specifically designed to raise loads
vertically at the destination [67]. The principle to reduce the stresses on the backbone of the human operator is to hold the object as
close to the body as possible [72]. Since Low Back Pain (LBP) is generally associated with lifting, the solution adopted by self-leveling
pallet carousels together with skid positioners is to automatically raise the pallet by using pneumatic air bladders or coil springs.
The basic concept of this lifter, which is only adjustable through the calibration of the base springs, is similar to that adopted for the
realization of the scissor lift control system designed in this paper. However, themain difference between the proposed solution and
what is already available in the literature is that, while in the pallet carousel springs and pneumatic air bladders are used to adjust
the height, and, consequently, the system is not fully adjustable without modifying the lifting mechanism, the adaptive system
designed in this work is much more flexible and can be easily adapted to different operating configurations.
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1.4 Scope and Contributions of this Study

In this investigation, the virtual prototype of a new adaptive mechanism serving as a lift table is developed by leveraging the
integration of modern computer-aided design, analysis, and control tools [73, 74]. The CAD model of the new scissor mechanism
developed in this investigation is represented in Figure 1.

Fig. 1. CAD exploded view of the adaptive scissor lift mechanism representing the case study of this investigation.

Since the lifting of goods is required in several industrial applications, the principal design goal of the mechanical system de-
vised in this study is to improve the working conditions of human operators in such a way as to ensure proper ergonomics. In effect,
the ability to adaptively adjust the height of the lifting mechanism analyzed in this investigation is aimed at ensuring a constant
platform height for the operator. In particular, the main idea is to keep a safe and ergonomically correct posture during the manual
materials handling of the goods. To achieve this fundamental goal, the first step is to carry out the development of a high-fidelity
computer model of the system of interest. This objective can be readily achieved by using the multibody approach to the analysis
of articulated mechanical systems, as shown in this work. Additionally, in the synthesis of the control system of the lifting table, a
proportional-derivative control architecture is used in this paper. More specifically, adaptivity is achieved by modulating the height
of the lift table according to the actual payload collocated on the platform. Thus, when the desired amounts of goods are loaded
onto the platform, the lift table lowers. Vice versa, when the goods are unloaded, the lift table rises.

The main idea is to devise an adaptive loading platform. More specifically, this paper proposes a solution to ensure ergonomics
in lifting operations to avoid low back disorders for the operator during manual material handling. The goal of the design process
is to create an ergonomic lifting system that, according to the actual operating conditions, must be able to position the packages at
the right height. Standard industrial scissor tables are designed to comply with a height that comes out of a statistical discourse of
the 5th and 95the percentiles from the height of 0.8 (m) to 1.1 (m), namely for an adult woman and man [75]. Differently from the
conventional approach, the principal innovation of the proposed solution lies in the fact that this new system, instead of positioning
itself at a predetermined height, adapts itself to current conditions by reading the total weight of the platform. As discussed in detail
above, from the literature survey carried out in this work, the proposed smart system turns out to be one of the first self-adaptive
lifters, which automatically adapts its operating configuration to the needs of the operator and the current loading conditions.
Furthermore, the main features of the proposed adaptive mechanism can also be tailored to the characteristics of the individual
operator since it is sufficient to change only some reference parameters to adapt the height of the lifter to the one suitable for the
current operator.

For performing dynamic simulations of the case study considered in the paper, four scenarios are considered, namely 1) an im-
pulsive loading, 2) a progressive loading, 3) an impulsive unloading, and 4) a progressive unloading. As discussed in the manuscript,
for the four scenarios taken into account, the four height steps and loading conditions mentioned before were thoroughly analyzed,
which are reported in the paper together with the controller parameters and the control torques (or the equivalent control forces)
corresponding to the different height steps. In particular, the worst scenario, which is the heaviest in terms of loads, is discussed
in more detail in the paper and is used as a reference for the others. This choice is induced by the fact that the nominal motor
power shows its peak in the heaviest case, as this represents an important numerical value that is needed for dimensioning the
mechanical system in general. For each loading step, the correct positioning of the platform at the nominal values of the defined
height is guaranteed by the feedforward control torque. The determination of the magnitude of the feedforward control torque was,
in turn, performed by using an inverse dynamics approach. Additionally, between each step, the law of motion of the platform is,
instead, regulated by the PD controller serving as a feedback system in such a way as to guarantee a sufficiently smooth movement.
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This paper proposes the description of the general methodology adopted in this investigation, that is, the procedure employed
for the CAD modeling, with a focus on the model import interface from SOLIDWORKS to SIMSCAPE MULTIBODY, the systematic
multibody approach used for modeling articulated mechanical systems, as well as their implementation in the MATLAB computa-
tional environment, and the strategy for the design of feedforward-feedback controllers, with an emphasis on the related methods
that justify the choices made in the paper regarding the control parameters [74, 76]. By using a CAD model developed employing
SOLIDWORKS, which was constructed respecting the design constraints in terms of height, the paper aims to analyze, first, from
a design viewpoint, the construction of the proposed scissor lift table, paying particular attention to joint elements, the assembly
and disassembly processes, and the effective manufacturing of the components [77]. Then, the subsequent analysis is focused on
exporting a properly simplified version of the CAD model of the proposed mechanism in the MATLAB environment. To this end, a
multibody model of the mechanical system at hand is developed by using SIMSCAPE MULTIBODY.Therefore, the paper presents first
the development of a detailed full-size three-dimensional CAD model for the system geometry using SOLIDWORKS [78,79].

As a design requirement, the virtual prototype of the adaptive mechanism must allow for an elevation change of one meter for
the working platform. For themechanical system under study, on the other hand, themultibodymodel and the control actions were
developed by exploiting the MATLAB simulation environment and by using the SIMSCAPE MULTIBODY suite. For this purpose, to
improve the quality of the work of the operator in the phase of loading and unloading goods, the dynamic behavior of the virtual
prototype was simulated by importing its CAD model from SOLIDWORKS to SIMSCAPE MULTIBODY. Subsequently, to increase the
ergonomics of this machine, a proper set of control laws was developed for the scissor lift system in the MATLAB environment. To
this end, the synthesis of the control system of this adaptive mechanism was carried out considering four different platform height
steps, at four different loading conditions, with trends in the rate of changes of the control actions that are inversely proportional
to the final height to be attained. In other words, to maintain a constant grip height for the operator, the platform is raised as the
load decreases and lowered as the load increases [80]. On the other hand, the determination of the feedback control torques was
performed by using a direct dynamics approach, thereby calibrating and/or refining the values of the controller parameters by per-
forming several numerical experiments.

To summarize the approach followed in this investigation, as well as the scope and the contributions of the work done, a syn-
thetic flowchart is reported in Figure 2.

PROBLEM FORMULATION AND
CONSTRAINT DEFINITION

Adaptive lifting table based on supported load.
Choice of maximum height and load and their intermediate
steps.
Compliance with ergonomics and safety criteria.

TRANSMISSION SYSTEM CHOICE
Rack and Pinion mechanism.

CAD MODEL DESIGN
Design for assembly-based dimensioning.
Structural frame.
Motor and transmission.
Electromechanical sensors.

INVERSE DYNAMIC SIMULATIONS (IDS)
Import of the MBD multibody model in the SIMSCAPE 
MULTIBODY environment.
Simulation of all the height-load steps and storage of FF
contribution.

DIRECT DYNAMIC SIMULATIONS (DDS)

CONTROL LOGIC DESIGN
Design of the PD control actions using FeedForward (FF)
and FeedBack (FB) contributions.

Early stage 
semi-empirical PD 
parameters tuning.

NUMERICAL EXPERIMENTS
Analysis and interpretation of the numerical results.

FF contributions 
obtained from the IDS.

Final stage
semi-empirical PD
parameters tuning.

Control logic implementation.

Fig. 2. Conceptual flowchart of the approach proposed and followed in the paper to perform the virtual prototyping, the multibody dynamic analysis,
and the controller design for the adaptive lift table serving for industrial material handling considered as the case study of this investigation.

1.5 Organization of the Manuscript

Apart from the current introduction section, this paper is organized according to the following structure. In Section 2., the sys-
tematic procedure based on the multibody approach for the mathematical modeling of articulated mechanical systems is recalled.
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Section 3. describes the key points involved in the design of nonlinear controllers suitable for guiding the spatialmotion ofmultibody
mechanical systems. In Section 4., the principal aspects of the CAD model of the proposed adaptive lifting mechanism constructed
by using SOLIDWORKS are described, thereby devoting a special focus to the assembly and disassembly characteristics of the sys-
tem geometric model, as well as on the functional analysis of its mechanical components. In Section 5., the main features of the
dynamical model of the adaptive lift table developed using SIMSCAPE MULTIBODY are illustrated, paying particular attention to the
simplifications andmodificationsmade in the transition from the CADmodel to themultibodymodel implemented inMATLAB. Sec-
tion 6. presents the numerical analysis together with the dynamical simulations of the virtual prototype constructed in this work,
the formulation of the laws of motion of the platform height for the respective case studies, and the definition of the parameters
used for the control system. Finally, Section 7. contains the summary of the paper, the conclusions reached in this investigation,
and some ideas for future research works.

2.Mathematical Modeling of Articulated Mechanical Systems

2.1 Kinematics of Multibody Systems

The mechanical components forming a given multibody systemmay experience significant relative translational and rotational
displacements. To be able to define an arbitrary configuration of a generic body in a multibody system, one must be able to identify
the collocation of the material points pertaining to that body in relation to a chosen inertial frame of reference [81]. To achieve this
goal, it is convenient to assign to each body of the multibody system a body-fixed reference frame that facilitates the definition of
the relative position vectors of the material points [82]. The position vectors of these points can then be found in other coordinate
systems, such as the inertial coordinate system, by simply defining the relative position and orientation of the body coordinate
system with respect to the other coordinate systems taken into consideration [83]. For a generic rigid body deployed in a three-
dimensional space, the definition of the position and orientation of one coordinate systemwith respect to another coordinate system
can be expressed using six variables, three of which define the relative translationalmotion between the two coordinate systems and
the remaining three specify the orientation of one coordinate system with respect to the other. In general, the three-dimensional
displacement of an arbitrary body labeled with the integer i that belongs to themultibody system can be described by a rotation plus
a translation [84]. By denoting with d = 3 the space dimension, the position vector ūi(P i) having dimensions d × 1 of an arbitrary
point P i on the rigid body i of the multibody system has constant components in the body-fixed coordinate system. If this rigid
body undergoes pure rotation, the position vector of point P i in the global frame of reference is defined by the vector ui(P i) and can
be determined according to the following equation:

ui(P i) = Aiūi(P i) (1)

being:

Ai =
[

αi βi γi
]

(2)

where Ai is the rotation matrix of dimensions d × d that defines the orientation of the body-fixed reference frame with respect to
the absolute coordinate system, whereas αi, βi, and γi respectively represent the global unit vectors of dimensions d× 1 associated
with the directions of the x̄i, ȳi, and z̄i axes of the local frame of reference. If the body translates in addition to the rotation, its
general motion can be described by using the translation of a reference point and the rotation of the body-fixed frame along the axis
of rotation. More specifically, the translation of the body can then be described by the position vector of the origin of the body-fixed
reference frame, and this position vector of dimensions d× 1 is denoted as Ri. Thus, in a three-dimensional space, one can write:

Ri =
[
xi yi zi

]T
(3)

where xi, yi, and zi denote the global Cartesian coordinates of the body-fixed reference point Ōi taken into consideration for the rigid
body i. In the multibody literature, this approach is commonly referred to as the Reference Point Coordinate Formulation (RPCF) [83].

When planar (spatial) rigid bodies are considered, the configuration of a generic body can be completely described by using
three (six) independent geometric coordinates serving as generalized coordinates. By denoting with nb the number of generalized
coordinates of a given rigid body modeled in a space of dimension equal to d, the general formula for determining the number of
independent coordinates is nb = 3 (d− 1). Considering a three-dimensional space, three generalized coordinates are needed as
translational coordinates to identify the position of the reference point serving as the origin of the body-fixed frame of reference
with respect to the global reference system, while three generalized coordinates are required as rotational coordinates to define
the orientation of the body-fixed frame of reference with respect to the global reference system. By doing so, considering a generic
rigid body identified with the discrete number i, the body translational coordinates are embedded in the reference point position
vector Ri of dimensions d × 1, whereas the body rotational coordinates are embedded in the vector θi of dimensions d × 1, which
is necessary for constructing the rotation matrix of the rigid body i. The rotation matrix Ai is, therefore, a function of the set of
rotational coordinates contained in the vector θi. In the spatial analysis, the rotational coordinate vector θi can have three or four
elements depending on whether Euler angles, Rodriguez parameters, or Euler parameters are employed. However, in this work, it
is assumed that the set of rotational coordinates is formed by the typical sequence of Euler angles employed in applied mechanics,
that is, a first angular displacement denoted with φi about the current x̄i axis (corresponding to the roll of the rigid body i), a second
angular displacement denoted with ϑi about the current ȳi axis (corresponding to the pitch of the rigid body i), and a third angular
displacement denoted with ψi about the current z̄i axis (corresponding to the yaw of the rigid body i). The rotational coordinate
vector used in this study is, therefore, given by:

θi =
[
φi ϑi ψi

]T
(4)

By assuming this hypothesis, one can readily calculate the rotation matrix Ai of the rigid body i as follows:

Ai = Ai
xA

i
yA

i
z (5)

being:

Ai
x =

 1 0 0

0 Ciφ −Siφ
0 Siφ Ciφ

 , Ai
y =

 Ciϑ 0 Siϑ
0 1 0

−Siϑ 0 Ciϑ

 , Ai
z =

 Ciψ −Siψ 0

Siψ Ciψ 0

0 0 1

 (6)
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where αi is a generic angle associated with the rigid body i, while the abbreviations Ciα = cos(αi) and Siα = sin(αi) were used
because of space limitations. By using the set of Euler angles introduced before, one can readily prove the following two identities:

ω̃i = Ȧ
i(
Ai

)T
, ˜̄ω

i
=

(
Ai

)T
Ȧ
i

(7)

where the dot symbol stands for the first time derivative, whereas ω̃i and ˜̄ω
i respectively represent the skew-symmetric matrices

of the cross product associated with the global and local angular velocity vectors ωi and ω̄i. These matrices are respectively defined
as follows:

ω̃i =

 0 −ωiz ωiy
ωiz 0 −ωix
−ωiy ωix 0

 , ˜̄ω
i
=

 0 −ω̄iz ω̄iy
ω̄iz 0 −ω̄ix
−ω̄iy ω̄ix 0

 (8)

where:

ωi =

 ωix
ωiy
ωiz

 , ω̄i =

 ω̄ix
ω̄iy
ω̄iz

 (9)

The global and local angular velocity vectors ωi and ω̄i are nonlinear functions of the rotational coordinate vector θi and linear

functions of its time derivative θ̇
i
. By exploiting this important property of the angular velocity vectors of a generic rigid body i, one

can write:
ωi = Giθ̇

i
, ω̄i = Ḡ

i
θ̇
i

(10)

being:

Gi =

 1 0 Siϑ
0 Ciφ −SiφC

i
ϑ

0 Siφ CiφC
i
ϑ

 , Ḡ
i
=

 CiϑC
i
ψ Siψ 0

−CiϑS
i
ψ Ciψ 0

Siϑ 0 1

 (11)

where Gi and Ḡ
i represent two linear transformation matrices of dimensions d× d that allow for readily computing the global and

local angular velocity vectors ωi and ω̄i of a rigid body i starting from the body rotational coordinate vector θi and its time derivative

θ̇
i
. Consequently, through the analytical definition of the translational and rotational coordinates Ri and θi of the body reference,

the configuration of the rigid body is completely identified. Additionally, the global position vector of an arbitrary point P i on the
rigid body i can be expressed in terms of the translation and rotation of the body by the vector ri(P i) of dimension d× 1 given by:

ri(P i) = Ri + ui(P i) = Ri +Aiūi(P i) (12)

where the three-dimensional vector ri(P i) identifies the position field of the rigid body i. This basic equation is referred to as the
fundamental formula of rigid kinematics since it can be used as the fundamental building block of the position, velocity, acceleration,
and jerk analysis of multibody systems consisting of interconnected rigid bodies.

The global velocity vector of a material point P i of the rigid body i is a vector of dimensions d× 1 denoted with vi(P i) that can
be determined by a direct time differentiation as vi(P i) = ṙi(P i). By doing so, one obtains the following mathematical expression
of the velocity field of the rigid body i:

vi(P i) = Ṙ
i
+ ωi × ui(P i) = Ṙ

i
+Ai

(
ω̄i × ūi(P i)

)
(13)

where ωi and ω̄i are two vectors of dimensions d× 1 that respectively represent the global and local angular velocity vectors of the
rigid body i related to each other by the equation ωi = Aiω̄i.

The global acceleration vector of a material point P i of the rigid body i is a vector of dimensions d× 1 denoted with ai(P i) that
can be determined by a direct time differentiation as ai(P i) = v̇i(P i) = r̈i(P i). By doing so, one obtains:

ai(P i) = R̈
i
+ ω̇i × ui(P i) + ωi ×

(
ωi × ui(P i)

)
= R̈

i
+Ai

(
˙̄ω
i × ūi(P i)

)
+Ai

(
ω̄i ×

(
ω̄i × ūi(P i)

)) (14)

where the three-dimensional vector ai(P i) identifies the acceleration field of the rigid body i.
Finally, the global jerk vector of a material point P i of the rigid body i is a vector of dimensions d × 1 denoted with ji(P i) that

can be determined by a direct time differentiation as ji(P i) = ȧi(P i) = v̈i(P i) =
...
r i(P i). By doing so, one obtains:

ji(P i) =
...
R
i
+ ω̈i × ui(P i) + 2ω̇i ×

(
ωi × ui(P i)

)
+ωi ×

(
ω̇i × ui(P i)

)
+ ωi ×

(
ωi ×

(
ωi × ui(P i)

))
=

...
R
i
+Ai

(
¨̄ω
i × ūi(P i)

)
+Ai

(
˙̄ω
i ×

(
ω̄i × ūi(P i)

))
+2Ai

(
ω̄i ×

(
˙̄ω
i × ūi(P i)

))
+Ai

(
ω̄i ×

(
ω̄i ×

(
ω̄i × ūi(P i)

))) (15)

where the three-dimensional vector ji(P i) identifies the jerk field of the rigid body i.
As discussed above, the global position, velocity, acceleration, and jerk fields of any material points on the rigid body of interest

can be described in terms of the system set of generalized coordinates once they have been determined. For convenience, the
generalized coordinate vector qib of dimensions nb × 1 is used to denote the generalized coordinates of the body reference, that is:

qib =

[
Ri

θi

]
(16)

where Ri and θi respectively represent the translational and rotational coordinates of the rigid body i introduced before. On the
other hand, considering the entire multibody system composed of a total number of Nb rigid bodies, one can identify the total
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number of the system generalized coordinates as nq = Nbnb. Thus, the system generalized coordinate vector is denoted with the
vector q of dimensions nq × 1 and can be immediately assembled as follows:

q =

[ (
q1
b

)T (
q2
b

)T
. . .

(
q
Nb
b

)T ]T
(17)

where the generalized coordinate vector qib associatedwith the generic rigid body i can be readily recovered from the total generalized
coordinate vector of themultibody system q by using a proper BooleanmatrixBi

b of dimensions nb×nq through the simple equation
qib = Bi

bq.

2.2 Dynamics of Multibody Systems

The correct formulation of the kinematic equations describing the geometric features of a given rigid body represents a funda-
mental preliminary step for the subsequent derivation of the equations ofmotion of themultibody system considered as awhole [85].
To achieve this goal, the analyst can conveniently start from the set of Newton-Euler equations that represent one of the basic prin-
ciples of classical mechanics [86]. In this vein, one can readily write the cardinal equations of dynamics for a given rigid body i as
the following: {

miR̈
i
= F ie + F ic

ĪGi ˙̄ω
i
+ ω̄i ×

(
ĪGi ω̄i

)
= T̄

i
Gi,e + T̄

i
Gi,c

(18)

where the point Gi identifies the center of mass of the rigid body i,mi is the mass of the rigid body i, the matrix ĪGi of dimensions
d×d denotes the local inertia matrix of the rigid body i referred to the center of massGi,F ie and F ic are two global vectors of dimen-
sions d× 1 respectively representing the external and constraint force vectors applied on the rigid body i, while T̄

i
Gi,e and T̄

i
Gi,c are

two local vectors of dimensions d× 1 respectively representing the external and constraint torque vectors referred to the center of
mass Gi of the rigid body i. The Newton-Euler equations introduced above are valid for all the rigid bodies that form the multibody
system and are based on the assumption that the body-fixed frame of reference is chosen such that its origin Ōi is coincident with
the center of mass Gi of the rigid body i, that is, the reference point of each rigid body i is indeed its center of mass.

Apart from the basic geometric assumptions recalled previously, the Newton-Euler equations are quite general in the sense that
they can be used for describing both unconstrained and constrained multibody mechanical systems. More precisely, in the dynamic
analysis of multibodymechanical systems, two general approaches can be utilized, namely aMinimal Coordinate Formulation (MCF)
and a Redundant Coordinate Formulation (RCF). By denoting with nf the number of degrees of freedom of the multibody system of
interest, the MCF assumes that nq = nf , that is, the system configuration is described by a number of generalized coordinates that
is equal to the number of the system degrees of freedom. In the RCF, on the other hand, it is assumed that nq > nf , that is, the
system configuration is described by a number of generalized coordinates that is greater than the number of the system degrees of
freedom. Consequently, the generalized forces associated with the presence of algebraic constraints disappear from the equations
of motion obtained using the MCF, while they are present in the mathematical formulation based on the RCF. This means that the
net constraint forces and torques F ic and T̄

i
Gi,c vanish from the Newton-Euler equations when the MCF is used, whereas these

mechanical actions are nonzero vector quantities in the case of the representation based on the RCF described before. To keep as
general as possible the mathematical derivation of the multibody equations of motion presented herein, the latter case is taken into
consideration.

Another important aspect to be analyzed concerns the mathematical form of the multibody equations of motion, which are
based on the cardinal equations of rigid body dynamics deduced from the Newton-Euler principle. This additional step is necessary
for transforming the equations of motion of the multibody system of interest into a form that is more convenient from an analytical
and computational point of view. This is because the original form of the Newton-Euler equations cannot be readily implemented in
a computer program devised for solving Ordinary Differential Equations (ODEs) or Differential-Algebraic Equations (DAEs). Inciden-
tally, the main cause of this problem is that the angular velocity vector is not the time derivative of any vector or vector function. To
solve this issue, a proper coordinate transformation must be used. The desired coordinate transformation must be able to relate the
conventional definition of the generalized coordinate vector of a rigid body i, denoted with the vector qib having dimensions nb × 1,
with the pseudo-coordinate vector of the same body, denoted with the vector pib having dimensions 2d× 1, which naturally appears
in the Newton-Euler equations. The latter vector is given by:

pib =

[
Ṙ
i

ω̄i

]
(19)

By employing the definition of the pseudo-coordinate vector given above, the Newton-Euler equations can be rewritten in the
following equivalent matrix form:

[
miI O

O ĪGi

][
R̈
i

˙̄ω
i

]
=

 0(
˜̄ω
i
)T

ĪGi ω̄i

+

[
F ie

T̄
i
Gi,e

]
+

[
F ic

T̄
i
Gi,c

]
(20)

or:
Iibṗ

i
b = P i

v + P i
e + P i

c (21)

where:

Iib =

[
miI O

O ĪGi

]
, P i

v =

 0(
˜̄ω
i
)T

ĪGi ω̄i

 , P i
e =

[
F ie

T̄
i
Gi,e

]
, P i

c =

[
F ic

T̄
i
Gi,c

]
(22)

where I is the d×d identity matrix, Iib is the augmented inertia matrix of the rigid body i having dimensions 2d×2d,P i
v is a vector of

mechanical actions associated with the centrifugal and Coriolis inertia forces having dimensions 2d×1,P i
e is a vector of mechanical

actions associated with the external forces having dimensions 2d× 1, and P i
c is a vector of mechanical actions associated with the

constraint forces having dimensions 2d× 1. In robotics and automation engineering, the vector pib is referred to as the twist vector,
the matrix Iib is called the spatial generalized inertia matrix, whereas the vectors P i

v , P
i
e, and P i

c are respectively identified as the
inertial, external, and constraint wrench vectors [87].
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Starting from the matrix formulation obtained above, the velocity transformation of interest can be directly expressed by ex-
ploiting the linear transformation used for defining the angular velocity vector as follows:[

Ṙ
i

ω̄i

]
=

[
Ṙ
i

Ḡ
i
θ̇
i

]
=

[
I O

O Ḡ
i

][
Ṙ
i

θ̇
i

]
⇔ pib = V i

bq̇
i
b (23)

being:

V i
b =

[
I O

O Ḡ
i

]
(24)

where the matrix V i
b having dimensions 2d× nb is the velocity transformation matrix of interest that is necessary for transforming

the equations of motion of a generic rigid body i from the Newton-Euler form used in classical mechanics to the Lagrangian form
used in applied mechanics. It immediately follows that:

pib = V i
bq̇
i
b ⇒ ṗib = V i

bq̈
i
b + V̇

i
bq̇
i
b (25)

By substituting the velocity transformation so found in the matrix form of the Newton-Euler equations, one obtains:

IibV
i
bq̈
i
b + IibV̇

i
bq̇
i
b = P i

v + P i
e + P i

c (26)

The pre-multiplication of both the left and right-hand sides of the previous matrix equation with the transpose of the velocity
transformation matrix yields: (

V i
b

)T
IibV

i
bq̈
i
b =

(
V i
b

)T (
P i
v − IibV̇

i
bq̇
i
b

)
+

(
V i
b

)T
P i
e +

(
V i
b

)T
P i
c (27)

or:
M iq̈ib = Qi

v +Qi
e +Qi

c (28)

being:

M i =
(
V i
b

)T
IibV

i
b =

 miI O

O
(
Ḡ
i
)T

ĪGiḠ
i

 (29)

Qi
v =

(
V i
b

)T (
P i
v − IibV̇

i
bq̇
i
b

)
=

 0

−
(
Ḡ
i
)T (

˜̄ω
i
ĪGi ω̄i + ĪGi

˙̄G
i
θ̇
i
)  (30)

Qi
e =

(
V i
b

)T
P i
e =

 F ie(
Ḡ
i
)T

T̄
i
Gi,e

 , Qi
c =

(
V i
b

)T
P i
c =

 F ic(
Ḡ
i
)T

T̄
i
Gi,c

 (31)

where M i represents the mass matrix of the generic rigid body i having dimensions nb × nb, Qi
v identifies the inertia generalized

force vector of the body i having dimensions nb × 1 which absorbs the generalized forces that are quadratic in the generalized ve-
locities, Qi

e denotes the external generalized force vector of the body i having dimensions nb × 1, and Qi
c indicates the constraint

generalized force vector of the body i having dimensions nb × 1.
By adopting a standard assembly process, the total set of equations of motion of the multibody system of interest can be con-

structed leading to the following matrix form:

Mq̈ = Qb +Qc, Qb = Qv +Qe (32)

where:

M =
Nb

A
i=1

M i =


M1 O O O

O M2 O O

O O
. . . O

O O O MNb

 , Qv =
Nb

A
i=1

Qi
v =


Q1
v

Q2
v

...
Q
Nb
v

 (33)

and

Qe =
Nb

A
i=1

Qi
e =


Q1
e

Q2
e

...
Q
Nb
e

 , Qc =
Nb

A
i=1

Qi
c =


Q1
c

Q2
c

...
Q
Nb
c

 (34)

whereM represents themassmatrix of themultibody system having dimensions nq×nq ,Qv identifies the inertia generalized force
vector of the multibody system having dimensions nq×1which absorbs the generalized forces that are quadratic in the generalized
velocities, Qe denotes the external generalized force vector of the multibody system having dimensions nq × 1, Qc indicates the
constraint generalized force vector of the multibody system having dimensions nq × 1, and Qb is the total generalized force vector
of the multibody system having dimensions nq × 1.

As discussed in detail below, to complete the mathematical description of the mechanical model of a given multibody system
considering a total number of algebraic equations equal to nc, a proper set of constraint equations grouped in the vector C of
dimensions nc × 1 must be appended to the equations of motion, thereby leading to the following differential-algebraic set of
dynamic equations: {

Mq̈ = Qb +Qc

C = 0
(35)
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This is referred to as the index-3 form of the differential-algebraic equations describing the dynamic behavior of multibody
mechanical systems. By adopting the analytical technique of Lagrange multipliers, the constraint generalized forced vector Qc can
be written by using a vector of additional unknowns, which are called Lagrange multiplies and are grouped in the vector λ having
dimensions nc × 1. By doing so, one can write Qc = −CT

q λ, where Cq is a rectangular matrix having dimensions nc × nq that
represents the Jacobian matrix of the constraint vector C computed with respect to the generalized coordinate vector q. It follows
that the multibody equations of motion can be conveniently expressed in the following equivalent form:{

Mq̈ = Qb −CT
q λ

C = 0
(36)

It is well-known that, to obtain a numerical solution of the multibody equations of motion that is physically consistent and
mathematically stable, onemust enforce the constraint equations at the position, velocity, and acceleration levels in correspondence
of each time step of the dynamical simulation [88]. To achieve this goal, the constraint equations must be preliminary formulated
at the velocity and acceleration levels by performing the direct integration process summarized below:

C = 0 ⇒ Ċ = 0 ⇒ C̈ = 0 (37)

being:
Ċ = Cq q̇ +Ct = 0 ⇔ Cq q̇ = −Ct (38)

and
C̈ = Cq q̈ −Qd = 0 ⇔ Cq q̈ = Qd (39)

where Ct is a vector of dimensions nc × 1 representing the first partial time derivative of the constraint vector and Qd is a vector of
dimensions nc × 1 which absorbs the terms that are quadratic in the generalized velocities. By replacing the constraint vector with
its second time derivative in the differential-algebraic form of the equations of motion, one obtains the so-called index-1 form of
the multibody equations given by: {

Mq̈ = Qb −CT
q λ

Cq q̈ = Qd

⇔
{

Mq̈ +CT
q λ = Qb

Cq q̈ = Qd

(40)

or: [
M CT

q

Cq O

][
q̈

λ

]
=

[
Qb

Qd

]
⇔ Maqa = Qa (41)

being:

qa =

[
q̈

λ

]
, Ma =

[
M CT

q

Cq O

]
, Qa =

[
Qb

Qd

]
(42)

where na = nq + nc is the total number of augmented coordinates, qa denotes the augmented coordinate vector of the multibody
system having dimensions na × 1, Ma is the augmented mas matrix of the multibody system having dimensions na × na, and Qa

is the augmented generalized force vector of the multibody system having dimensions na × 1. By numerically solving the linear
system of algebraic equations formulated above, one can obtain at each time step of the dynamical simulation the system gener-
alized acceleration vector q̈ and the system Lagrange multipliers vector λ, which, in turns, can be respectively employed to march
forward the numerical solution of the equations of motion on the time grid and to calculate the constraint generalized force vector
necessary for determining the mechanical actions of the joint constraints.

The numerical procedure described so far is referred to as the augmented formulation. From a wider perspective, the solution of
the equations of motion obtained using the augmented Lagrangian formulation, which presents a solid theoretical foundation [89],
requires the solution of a system of differential-algebraic equations [90]. Inmultibody systems, kinematic constraint equations come
into play because of the presence of mechanical joints or specified motion trajectories. In general, two procedures can be followed
to analytically formulate and numerically solve the dynamic equations of constrained multibody systems. These procedures are
referred to as the embedding technique and the augmented formulation [91]. In the embedding technique, the system dynamic
equations are formulated in terms of the degrees of freedom. This technique leads to a minimum set of dynamic equations that do
not contain any constraint forces. Therefore, when using the embedding technique, there are nq = nf equations for nq unknowns,
where nq is the number of generalized coordinates and nf are the degrees of freedom of the multibody system. The numerical so-
lution of the multibody equations obtained using the embedding technique requires only the integration of a system of differential
equations [92].

As mentioned before, by using the embedding technique, the constraint forces are systematically eliminated and a number of
equations of motion equal to the number of the system degrees of freedom are found [93]. To obtain this minimum set of differ-
ential equations, it is necessary to use a proper velocity transformation matrix specifically devised for this purpose, which can be
systematically determined when the total vector of the system generalized coordinates is expressed in terms of the independent
generalized coordinates [94]. In the augmented formulation, on the other hand, the dynamic equations are formulated in terms of
a set of redundant coordinates. As a consequence, the resulting equations are expressed in terms of dependent and independent
generalized coordinates, as well as in terms of the constraint generalized forces. Therefore, when using the augmented formulation,
there are na = nq + nc equations for na unknowns, where nq is the number of generalized coordinates that include both indepen-
dent and dependent generalized coordinates, while nc is the total number of the algebraic constraints involved in the mathematical
model of the multibody system. In particular, the latter approach is the one adopted in this paper in conjunction with a proper
constraint stabilization method based on the generalized coordinate partitioning procedure [91].

2.3 Algebraic Constraints Classification

One of the most fundamental aspects of the development of a multibody model of a given articulated mechanical system is rep-
resented by the proper mathematical modeling of the constraint equations applied to it [95]. From a general perspective, algebraic
constraints are classified according to the mathematical structure and physical meaning of the equations that represent them [96].
A short summary of the constraint classification methods is, therefore, presented herein.

First, algebraic constraints can be classified into unilateral and bilateral constraints. A bilateral constraint is described by one
or more constraint equations. A unilateral constraint is described by one or more constraint inequalities. An example of a bilateral
constraint is a material point constrained to move on the surface of a sphere. An example of a unilateral constraint is a material
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point constrained to move within a cube. Themechanical joints of interest for the present study are exclusively modeled as bilateral
constraints.

A second constraint classification can be made to distinguish between holonomic and nonholonomic constraints. A holonomic
constraint is described by one or more algebraic equations formulated exclusively in terms of the generalized coordinates of the sys-
tem. A holonomic constraint acts on the space of generalized positions of the multibody system subjected to it by placing geometric
limits on the feasible motion. Consequently, a holonomic constraint removes degrees of freedom from the mechanical system it
acts on. On the other hand, a nonholonomic constraint is described by one or more algebraic equations formulated in terms of the
generalized coordinates and/or the generalized velocities and/or generalized accelerations of the mechanical system. However, to
be effectively nonholonomic, these equations must not be integrable, that is, they must be not ascribable to an equivalent mathe-
matical form in which only generalized coordinates appear. Themechanical joints of interest for this work are exclusively described
by holonomic constraints.

A third constraint classification is the distinction between scleronomic and rheonomic constraints. A rheonomic constraint is
described by one ormore algebraic equations inwhich the time dependence explicitly appears. A scleronomic constraint is described
by one or more algebraic equations in which the time dependence does not explicitly appear. Examples of rheonomic constraints
are the trajectory imposed on the end effector of a robotic manipulator or the time law of the angular velocity imposed on an axis of
a rotor. An example of a scleronomic constraint is the linear guide between a seat and the chassis of a road vehicle. The mechanical
joints of interest for the present study are exclusively modeled as scleronomic constraints.

A fourth constraint classification encompasses ideal and real constraints. An ideal constraint, referred to as a smooth or per-
fect, or frictionless constraint, is a constraint that presents a virtual work of its generalized constraint reaction forces equal to zero.
Therefore, there is no resistance offered by the constraint in the motions that occur along the linear or angular directions not im-
peded by the shapes of the kinematic surfaces. On the other hand, a real constraint, referred to as a rough or imperfect, or frictional
constraint, is a constraint that presents a virtual work of its generalized constraint reaction forces different from zero. An example
of an ideal constraint is a piston of an internal combustion engine that moves in a cylinder whose surface is perfectly smooth. An
example of a real constraint is a piston of an internal combustion engine that moves in a cylinder whose surface has significant
surface asperities and, therefore, presents a resistant friction force on the piston itself. The mechanical joints of interest for this
work are described by ideal constraints.

A fifth and final classification of the algebraic constraint equations identifies intrinsic and extrinsic constraints. Intrinsic con-
straints are mathematically described by algebraic equations that schematize the normalization conditions of the rotational coor-
dinates used in the description of the kinematics of the rigid body. Physically, they correspond to the rigidity condition of a rigid
body. An example of an intrinsic constraint is the normalization condition of the Euler parameters that describe the orientation of
a rigid body in space. Extrinsic constraints, on the other hand, are mathematically described by algebraic equations that consider
the coupling conditions between the various rigid bodies that form amultibody mechanical system. For convenience, although they
should be formally classified as extrinsic constraints, the constraints that impose a certain dynamic behavior on the system, such
as the pure rolling condition, are excluded from this category. Physically, extrinsic constraints correspond to the kinematic pairs
present in the joints of the multibody mechanical system. An example of an extrinsic constraint is the cylindrical joint between
a piston and a cylinder of an internal combustion engine. Additionally, as mentioned before, the imposed motion constraints can
be conveniently grouped in a separate category even if they physically represent extrinsic constraints. An example of an imposed
motion constraint is the angular displacement rate assigned to the crank of the slider-crank mechanism of an internal combustion
engine.

Formally, it is possible to represent the set of intrinsic constraint equations as the vectorΦ ≡ Φ(q, t) having dimensions nc,Φ×1,
where nc,Φ is the total number of intrinsic constraint equations. Also, it is possible to represent the set of the algebraic constraint
equations modeling imposed motions as the vector Θ ≡ Θ(q, t) having dimensions nc,Θ × 1, where nc,Θ is the total number of
imposed motion equations. Similarly, it is possible to represent the set of extrinsic constraint equations as the vector Ψ ≡ Ψ(q, t)
having dimensions nc,Ψ × 1, where nc,Ψ is the total number of extrinsic constraint equations. By combining all the previous con-
straint vectors in one vector function denoted with C ≡ C(q, t) of dimensions nc × 1, where nc = nc,Φ + nc,Θ + nc,Ψ is the total
number of algebraic constraint equations, one obtains the following formal expression of the constraint equations:

C =

 Φ

Θ

Ψ

 (43)

where the corresponding Jacobian matrix is given by:

Cq =

 Φq

Θq

Ψq

 (44)

The mechanical joints of interest for the present study are exclusively modeled as extrinsic constraints.

2.4 Mechanical Joints Modeling

As discussed above, the kinematic constraints can be distinguished into mechanical joints and driving joints. Mechanical joints
define the connectivity between the rigid bodies forming the multibody system, whereas driving joints describe the motion tra-
jectories that are specified for the components of the mechanical system [97]. When using absolute coordinates in the analysis of
multibodymechanical systems, the formulation of the kinematic constraints that describe a joint between two arbitrary rigid bodies
in the multibody system can be made independent of the topological structure of the system [98]. This is because identical sets of
coordinates are used to describe the motion of all the bodies that compose the multibody system under analysis.

In this subsection, the mathematical formulation of the algebraic equations of the mechanical joints used in spatial multibody
systems is discussed, with particular emphasis on the description of the mechanical joints encountered in the multibody analysis
of the case study considered in this work. In particular, to simplify the kinematic and dynamic analysis of the adaptive mechanism
serving as a lifting table assumed as the case study of this investigation, only three types of kinematic joints are considered, namely
revolute joints, prismatic joints, and planar joints. The mathematical formulation of the algebraic constraint equations associated
with these three general joint constraints is analyzed in detail below.

Before analyzing in detail the development of the algebraic constraint equations, which serve for the mathematical modeling
of the mechanical joints, it is convenient to recall the expression of the position, velocity, acceleration, and jerk fields of a generic
rigid body i in a compact matrix form, which is commonly employed in the framework of the Lagrangian formulation assumed in
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multibody dynamics. For this purpose, one can write:


ri(P i) = Ri +Aiūi(P i)

ṙi(P i) = Li(P i)q̇i

r̈i(P i) = Li(P i)q̈i + L̇
i
(P i)q̇i

...
r i(P i) = Li(P i)

...
q i + 2L̇

i
(P i)q̈i + L̈

i
(P i)q̇i

(45)

being:

Li(P i) =

[
I Ai

(
˜̄u
i
(P i)

)T
Ḡ
i

]
(46)

where Li(P i) is a rectangular matrix having dimensions d × nb that represents the Jacobian matrix of the position field ri(P i)
describing the rigid body i computed with respect to the generalized coordinate vector qib of the same generic body.

Let the discrete index k be the identifier of a generic kinematic pair describing a mechanical joint that connects two rigid bodies
of the multibody system, which are respectively identified with the integers ik and jk. The collocation points of the kinematic joint
k on the two bodies ik and jk are respectively denoted with P ik and P jk , while their local position vectors of dimensions d × 1 are
respectively indicated as ūik (P ik ) and ūjk (P jk ). Additionally, to identify the joint axis of a given kinematic pair k as seen by the
two rigid bodies ik and jk, it is necessary to specify two local direction vectors of dimensions d× 1, which are respectively denoted
as v̄

ik
1 and v̄

jk
1 . The local direction vectors of the joint axis k denoted with v̄

ik
1 and v̄

jk
1 can be readily employed to construct two

orthogonal triads necessary for the subsequent definition of the algebraic equations modeling the kinematic joint k. To this end,
one can readily determine the local unit vectors v̄

ik
2 and v̄

ik
3 starting from the direction vector v̄ik1 , as well as the local unit vectors

v̄
jk
2 and v̄

jk
3 starting from the direction vector v̄jk1 . By doing so, the following properties of mutual orthonormality are satisfied:



(
v̄
ik
1

)T
v̄
ik
1 − 1 = 0(

v̄
ik
2

)T
v̄
ik
2 − 1 = 0(

v̄
ik
3

)T
v̄
ik
3 − 1 = 0(

v̄
ik
1

)T
v̄
ik
2 = 0(

v̄
ik
1

)T
v̄
ik
3 = 0(

v̄
ik
2

)T
v̄
ik
3 = 0

,



(
v̄
jk
1

)T
v̄
jk
1 − 1 = 0(

v̄
jk
2

)T
v̄
jk
2 − 1 = 0(

v̄
jk
3

)T
v̄
jk
3 − 1 = 0(

v̄
jk
1

)T
v̄
jk
2 = 0(

v̄
jk
1

)T
v̄
jk
3 = 0(

v̄
jk
2

)T
v̄
jk
3 = 0

(47)

Furthermore, by considering the rotation matrices Aik and Ajk respectively associated with the rigid bodies ik and jk, it is
possible to express the direction vectors introduced before with respect to the global reference system, thereby being able to write
the absolute geometric relationships that define the mathematical structure of the mechanical joint k of interest. By doing so, it
follows that: 

v
ik
1 = Aik v̄

ik
1

v
ik
2 = Aik v̄

ik
2

v
ik
3 = Aik v̄

ik
3

,


v
jk
1 = Ajk v̄

jk
1

v
jk
2 = Ajk v̄

jk
2

v
jk
3 = Ajk v̄

jk
3

(48)

Consequently, it is now possible to define an arbitrary direction vector associated with the kinematic joint k with respect to both
the rigid bodies ik and jk involved in the kinematic pair. In this vein, by denoting with wik and wjk the two arbitrary direction
vectors of dimensions d× 1 mentioned before, one can write:

wik = aikv
ik
1 + bikv

ik
2 + cikv

ik
3 , wjk = ajkv

jk
1 + bjkv

jk
2 + cjkv

jk
3 (49)

where aik , bik , cik , ajk , bjk , and cjk are arbitrary scalar quantities necessary for identifying the generic direction vectors of inter-
est, while the dot product between the global vectors wik and wjk is a constant scalar quantity denoted as dik,jk =

(
wik

)T
wjk .

Additionally, the following useful identities can be easily proved:
v̇
ik
1 = D

ik
1 q̇ik

v̇
ik
2 = D

ik
2 q̇ik

v̇
ik
3 = D

ik
3 q̇ik

,


v̇
jk
1 = D

jk
1 q̇jk

v̇
jk
2 = D

jk
2 q̇jk

v̇
jk
3 = D

jk
3 q̇jk

(50)

where: 
D
ik
1 =

[
O Aik

(
˜̄v
ik
1

)T
Ḡ
ik

]
D
ik
2 =

[
O Aik

(
˜̄v
ik
2

)T
Ḡ
ik

]
D
ik
3 =

[
O Aik

(
˜̄v
ik
3

)T
Ḡ
ik

] ,


D
jk
1 =

[
O Ajk

(
˜̄v
jk
1

)T
Ḡ
jk

]
D
jk
2 =

[
O Ajk

(
˜̄v
jk
2

)T
Ḡ
jk

]
D
jk
3 =

[
O Ajk

(
˜̄v
jk
3

)T
Ḡ
jk

] (51)

A generic revolute joint k is described by nkc,Ψ = 5 algebraic equations. In the geometric description of a generic revolute joint k,

the unit vectors v̄
ik
1 and v̄

jk
1 define the direction vectors of the revolute joint axis and are respectively expressed with respect to the

rigid bodies ik and jk that form the kinematic pair k. For a revolute joint k that connects the rigid bodies ik and jk of the multibody
system, the following vector of extrinsic constraint equations can be assembled:

Ψk =


rik (P ik )− rjk (P jk )(

v
ik
2

)T
v
jk
1(

v
ik
3

)T
v
jk
1

 (52)
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The Jacobian matrix of the constraint equations associated with the revolute joint k can be written as:

Ψk
qk =

[
Ψk

qik
Ψk

qjk

]
(53)

where:

Ψk
qik

=


Lik (P ik )(
v
jk
1

)T
D
ik
2(

v
jk
1

)T
D
ik
3

 , Ψk
qjk

=


−Ljk (P jk )(
v
ik
2

)T
D
jk
1(

v
ik
3

)T
D
jk
1

 (54)

When formulating the constraint equations of the revolute joint k at the acceleration level, the constraint quadratic velocity
vector that absorbs the terms that are quadratic in the generalized velocities is given by:

Qk
d,Ψ = Q

ik
d,Ψ +Q

jk
d,Ψ (55)

where:

Q
ik
d,Ψ = −Ψ̇

k
qik q̇

ik

=


−L̇

ik (P ik )q̇ik

−
(
v̇
jk
1

)T
D
ik
2 q̇ik −

(
v
jk
1

)T
Ḋ
ik
2 q̇ik

−
(
v̇
jk
1

)T
D
ik
3 q̇ik −

(
v
jk
1

)T
Ḋ
ik
3 q̇ik

 (56)

and

Q
jk
d,Ψ = −Ψ̇

k
qjk q̇

jk

=


L̇
jk (P jk )q̇jk

−
(
v̇
ik
2

)T
D
jk
1 q̇jk −

(
v
ik
2

)T
Ḋ
jk
1 q̇jk

−
(
v̇
ik
3

)T
D
jk
1 q̇jk −

(
v
ik
3

)T
Ḋ
jk
1 q̇jk

 (57)

Since the revolute joint is modeled by a set of scleronomic constraint equations, the partial derivative with respect to the time
of the constraint vector associated with the revolute joint is the zero vector.

A generic prismatic joint k is described by nkc,Ψ = 5 algebraic equations. In the geometric description of a generic prismatic joint

k, the unit vectors v̄
ik
1 and v̄

jk
1 define the direction vectors of the prismatic joint axis and are respectively expressed with respect

to the rigid bodies ik and jk that form the kinematic pair k. For a prismatic joint k that connects the rigid bodies ik and jk of the
multibody system, the following vector of extrinsic constraint equations can be assembled:

Ψk =



(
v
ik
2

)T (
rik (P ik )− rjk (P jk )

)(
v
ik
3

)T (
rik (P ik )− rjk (P jk )

)(
v
ik
1

)T
v
jk
2(

v
ik
1

)T
v
jk
3(

wik
)T

wjk − dik,jk


(58)

The Jacobian matrix of the constraint equations associated with the prismatic joint k can be written as:

Ψk
qk =

[
Ψk

qik
Ψk

qjk

]
(59)

where:

Ψk
qik

=



(
rik,jk (P ik , P jk )

)T
D
ik
2 +

(
v
ik
2

)T
Lik (P ik )(

rik,jk (P ik , P jk )
)T

D
ik
3 +

(
v
ik
3

)T
Lik (P ik )(

v
jk
2

)T
D
ik
1(

v
jk
3

)T
D
ik
1(

wjk
)T

D
ik
w


, Ψk

qjk
=



−
(
v
ik
2

)T
Ljk (P jk )

−
(
v
ik
3

)T
Ljk (P jk )(

v
ik
1

)T
D
jk
2(

v
ik
1

)T
D
jk
3(

wik
)T

D
jk
w


(60)

being:

D
ik
w = aikD

ik
1 + bikD

ik
2 + cikD

ik
3 (61)

and

D
jk
w = ajkD

jk
1 + bjkD

jk
2 + cjkD

jk
3 (62)

where rik,jk (P ik , P jk ) = rik (P ik )−rjk (P jk ). When formulating the constraint equations of the prismatic joint k at the acceleration
level, the constraint quadratic velocity vector that absorbs the terms that are quadratic in the generalized velocities is given by:

Qk
d,Ψ = Q

ik
d,Ψ +Q

jk
d,Ψ (63)
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where:
Q
ik
d,Ψ = −Ψ̇

k
qik q̇

ik

=



−
(
ṙik,jk (P ik , P jk )

)T
D
ik
2 q̇ik −

(
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)T
Ḋ
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2 q̇ik

−
(
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−
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(64)

and
Q
jk
d,Ψ = −Ψ̇

k
qjk q̇

jk

=
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(65)

Since the prismatic joint is modeled by a set of scleronomic constraint equations, the partial derivative with respect to the time
of the constraint vector associated with the prismatic joint is the zero vector.

A generic planar joint k is described by nkc,Ψ = 3 algebraic equations. In the geometric description of a generic planar joint k,

the unit vectors v̄
ik
1 and v̄

jk
1 define the direction vectors of the planar joint axis and are respectively expressed with respect to the

rigid bodies ik and jk that form the kinematic pair k. For a planar joint k that connects the rigid bodies ik and jk of the multibody
system, the following vector of extrinsic constraint equations can be assembled:

Ψk =


(
v
ik
1

)T (
rik (P ik )− rjk (P jk )

)(
v
ik
2

)T
v
jk
1(

v
ik
3

)T
v
jk
1

 (66)

The Jacobian matrix of the constraint equations associated with the planar joint k can be written as:

Ψk
qk =

[
Ψk

qik
Ψk

qjk

]
(67)

where:
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qik

=
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1

 (68)

being rik,jk (P ik , P jk ) = rik (P ik ) − rjk (P jk ). When formulating the constraint equations of the planar joint k at the acceleration
level, the constraint quadratic velocity vector that absorbs the terms that are quadratic in the generalized velocities is given by:

Qk
d,Ψ = Q

ik
d,Ψ +Q

jk
d,Ψ (69)

where:
Q
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(70)

and
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 (71)

Since the planar joint is modeled by a set of scleronomic constraint equations, the partial derivative with respect to the time of
the constraint vector associated with the prismatic joint is the zero vector.
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3.Controller Synthesis for Articulated Mechanical Systems

3.1 State-Space Representation of Controlled Multibody Systems

To properly design a controller for a given articulated mechanical system, it is necessary to develop an accurate mathematical
model of the mechanical system to be controlled so that realistic predictions, based on numerical experiments, can be made about
the performance of the desired controller operating on the original system. Depending on the nature of the system model, it is
possible to differentiate between linear mechanical systems and nonlinear mechanical systems [80]. While linear mechanical sys-
tems mathematically represent simple dynamical systems that require standard control algorithms, nonlinear mechanical systems
are complex systems that require nonstandard control algorithms. In particular, multibody mechanical systems, such as the case
study that is the object of the present investigation, belong to the latter category. Therefore, the development of control algorithms
that are suited for these dynamic systems is particularly challenging. For both linear and nonlinear dynamical systems, however, a
fundamental preliminary step, to be carried out before focusing on the design of a controller, is the state-space representation of the
equations of motion. This is because this simple coordinate transformation allows for readily performing dynamical simulations by
using standard numerical integration methods.

By using a multibody formulation in redundant coordinates, it is possible to write the index-1 dynamic equations for nonlinear
multibody systems in the configuration space as follows:{

Mq̈ = Qb +Qu −CT
q λ

Cq q̈ = Qd

(72)

where Qu is a vector of dimensions nq × 1 representing the generalized force vector of the control actions and is given by:

Qu = Bau (73)

where nu is the number of control inputs, u is a vector having dimensions nu × 1 containing the control actions, and Ba is a matrix
of dimensions nq × nu denoting the actuator collocation matrix.

As shown above, one can readily make use of the augmented formulation for calculating at each instant of time both the gener-
alized acceleration vector q̈ and the Lagrange multiplier vector λ of the multibody system, which are necessary for performing the
dynamic analysis. In this vein, for conveniently evaluating the performance of the control system, it is necessary to transform the
dynamical model of the multibody system under study from a representation in the configuration space to a representation in the
state space. In general, the system behavior changes with time, and the information about its evolution can be captured by the rate-
of-change variables within a system or in combinations of these variables and their time derivatives. In this respect, a set of system
variables that describe the condition of the dynamical system at any instant in time are used to identify a state space model. These
new variables are known as the state variables of the dynamical system [15]. Typically, the dimension of the set of state variables is
equal to nz = 2nq . These state variables describe the behavior of a given dynamical and, for a multibody mechanical system, can be
expressed as follows:

z =

[
z1

z2

]
=

[
q

q̇

]
(74)

where z is the system state vector having dimensions nz × 1 that can be partitioned into two blocks of dimensions nq × 1 given by
z1 = q and z2 = q̇. It follows that the equations of motion of a generic nonlinear multibody mechanical system can be written in
the state space as:

ż = f (75)

being:

f =

[
f1

f2

]
=

[
q̇

q̈

]
(76)

where f is the system state function having dimensions nz × 1 that can be partitioned into two blocks of dimensions nq × 1 given
by f1 = q̇ and f2 = q̈. The state-space representation of the equations of motion of a multibody mechanical system also simplifies
their numerical solution since it allows for the use of standard numerical integration schemes in the computer implementation,
such as the explicit Runge-Kutta methods or the explicit Adams-Bashforth methods.

3.2 Nonlinear Controller Design for Controlled Multibody Systems

From a mathematical perspective, when considering the formal structure of a control policy, there are two types of controllers
possible: open-loop controllers and closed-loop controllers [80]. Open-loop controllers, also known as feedforward controllers, are
defined independently of the current state of the dynamical system to be controlled. On the other hand, closed-loop controllers, also
known as feedback controllers, are based on detecting the current state of the dynamical system. In a typical scenario, an open-loop
or feedforward controller is aimed at guiding the mechanical system of interest from its initial configuration to a final configuration,
which should be as close as possible to the desired one. Conversely, a closed-loop or feedback controller is meant for compensating
as much as possible for the error of the final configuration achieved by the mechanical system when it is near to the desired one.

One drawback of feedforward controllers is that this class of control systems is not very robust because the control law does
not depend on the actual fulfillment of the goals set for the controller since this verification can be done only by measuring the
current state of the dynamical system. Feedback controllers are, in general, very robust because the control law depends on the
current measurement of the system state and, therefore, it is possible to verify the actual achievement of the objectives set for the
controller. In fact, when adopting a feedback control strategy, by properly using sensors capable of partially or totally capturing the
time evolution of the system state, it is possible to measure the controlled variable and have an indication of whether or not the
control system is working properly, whereas this is not the case when employing a pure feedforward control approach. However,
the most effective and successful control strategies are generally formulated by combining a feedforward control approach and a
feedback control technique.

Before start delving into the analysis of the mathematical structure of the simple but effective control systems suitable for
multibody mechanical systems, it is convenient to focus on the specific control goals to be achieved by the control approach of the
adaptive lifting table considered as the case study of this investigation. In the case study of this paper, to solve simultaneously
three separate control problems, three control laws need to be devised. The first control problem to be solved deals with the gross
motion control of the position of the platform. More specifically, starting from a set of operative conditions, the desired elevation
of the adaptive lifting table must be obtained. This problem is solved by designing a first driving controller that serves for guiding
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the motion in large of the platform. The second control problem to be solved concerns the fine motion control of the position of
the platform. More precisely, the goal of this second controller is to monitor the position of the platform when reaching the desired
elevation. This problem is solved by designing a second compensation controller aimed at correcting the position errors made by the
first control system when approaching the desired set point and guiding the fine motion of the platform. The third and last control
problem to be solved is relevant to the definition of a safety controller. This problem is solved by devising a start-and-stop controller
for guaranteeing perimeter safety. This controller ensures that the operator stays sufficiently distanced from the machine during
its movement, thereby preventing the risk of accidents.

The objective of a control system is to affect the dynamics of the multibody system of interest in order to achieve desirable
dynamical behavior. More specifically, controlling a dynamical system means properly designing the time laws of the manipulable
mechanical actions to obtain an advantageous dynamic behavior, which can be devised in advance by solving motion planning
tasks. Depending on the nature of the dynamical system, the control actions that need to be applied to the system itself can be
forces, torques, and moments, whereas the desired behavior can be formulated in terms of preassigned time laws for the positions,
velocities, and generalized accelerations of the system.

Control systems typically have two goals: regulation and tracking. In a regulation problem, the system is controlled to maintain
its output as close as possible to a certain set point. In a tracking problem, the system is controlled so that its output follows as
precisely as possible a particular desired trajectory. The stabilization problem is a particular example of the regulation problem. In
this case, a control system is intended to drive the system towards the rest configuration from any nonzero initial conditions. Thus,
the desired set point of the regulation problem is the zero vector. Due to the nature of the problem to be solved, a special but very
important class of control systems, namely state-feedback controllers [69], is considered in this investigation. In this type of control
system, the control input is a function of the system states. Furthermore, an appropriate set of feedback parameters is introduced
to construct the control actions, and the mathematical structure that defines the controller can be linear or nonlinear.

Among the category of feedback controllers, there are several advanced control techniques. One of themost simple and effective
control strategies,which is very common in industrial engineering applications because of its versatility, is the Proportional-Integral-
Derivative (PID) control method [15]. In combination with an inverse dynamics control approach, the PID control strategy is adopted
in the present work for guiding the motion of the adaptive lifting platform employed in the paper as the case study [99]. In the
definition of a PID controller, the control actions are formulated by considering the instant variations of the state variables of the
dynamical system of interest. More specifically, the input of a general PID controller is the error function calculated by comparing the
actual dynamical behavior and the desired time evolution of the dynamic system [100]. The current time evolution of themechanical
system is measured through the use of sensors, which must be properly collocated on the system, whereas the desired behavior
assumed as the reference is determined in advance to satisfy the design goals of the control policy.

By denoting the total control action of a PID controller with the vector u of dimensions nu × 1, this vector can be written as the
sum of three separate contributions. The first contribution is a vector of dimensions nu × 1 indicated as up that represents a term
proportional to the error function. The second contribution is a vector of dimensions nu × 1 indicated as ui that represents a term
proportional to the integral over time of the error function. The third contribution is a vector of dimensions nu × 1 indicated as ud
that represents a term proportional to the derivative over time of the error function. Thus, the total vector of control actions can be
expressed as:

u = up + ui + ud = −Kpe−Kiē−Kdė (77)

being:

e = q − qd, ē =

∫ t

0
edτ, ė =

de

dt
(78)

where τ is a dummy time variable, qd represents the desired configuration vector of the multibody mechanical system having
dimensions nq × 1, while Kp, Ki, and Kd denote three coefficient matrices of dimensions nq × nq that respectively identify the
proportional, integral, and derivative terms of the PID controller [101]. According to the control strategy mentioned before, the
corresponding closed-loop control scheme is represented in Figure 3.

up

ui

ud

PlantƩƩ
+

+
++

-

Reference OutputError

Fig. 3. PID controller scheme.

When used to solve themotion control problem of themechanical system of interest, to achieve good performance of the control
system, the coefficient matrices that specifically define the characteristics of a given PID controller must be properly tuned, and this
is often a trial-and-error iterative process [80]. In general, the behavior summarized inTable 1 indicates how the overall performance
of a generic PID control system varies when the control parameters are adjusted.

A preliminary calibration of the control parameters can be conveniently carried out by exploiting the Ziegler-Nichols method,
which, however, must be subsequently modified and refined through an objective analysis of the performance resulting from dy-
namical simulations. This approach is a heuristic tuning technique developed by John G. Ziegler and Nathaniel B. Nichols in the
1940s to get a proper estimation of the numerical values of the controller parameters [102]. First, the gains denoted withKi andKp
are initially set to zero. The proportional gainKp is then increased until it reaches the ultimate gain referred to asKu, at which point
the output of the control loop begins to continually oscillate. Subsequently, by using the numerical values ofKu and the oscillation
period Tu so found, the final gains are set as shown in Table 2.
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Table 1. Effect of independent increase of each one of the PID parameters.

PARAMETER RISE TIME OVERSHOOT SETTLING TIME ASYMPTOTIC ERROR STABILITY
Kp Decreases Increases Minor Changes Decreases Improves
Ki Decreases Increases Increases Deleted Improves
Kd Increases Decreases Decreases No Effect Deteriorates

Table 2. Tuning the numerical values of the controller parameters according to the Ziegler-Nichols method.

CONTROL TYPE Kp Ki Kd

P 0.50Ku

PI 0.45Ku 0.54Ku/Tu

PID 0.60Ku 1.2Ku/Tu 3KuTu/40

The main advantage of the Ziegler-Nichols method is that the online tuning requires no tuning parameters, making it simple to
deploy and use in practice. However, the disadvantages are the process upsets that may occur during tuning, resulting in excessively
aggressive parameters [103]. For example, the method does not work well when applied to time-delayed processes.

In conclusion, it is important to note that the PID control technique described before can be interpreted as a combination of
feedforward plus feedback control methods. This is because, in general, the reference dynamical behavior utilized for the multibody
system is an optimized time law,which results from the solution of themotion planning problem thatmust be carried out in advance.

4. SOLIDWORKS CAD Model

4.1 Design Constraints Identification

This section examines the design constraints imposed on the realization of the physical prototype of the adaptive lifting table
and analyzes the various system components and mechanical parts that form the CAD assembly.

The main goal is to use the lifting table to load and empty a pallet up to a maximum weight of 1000 (kg). To materially achieve
this goal, the lifter is actuated by a rack and pinion mechanism. The system will be able to reach a maximum height of 1 (m) since
this reference height is the result of consolidated ergonomic studies [75]. This measure comes out of biomechanical evaluations that
allow for achieving an optimal range of height of the work surface in manual work conditions, in which there is no flexion of the
trunk and an appropriate angle rotation is considered for the shoulder. The reference height of the moving platform is selected by
considering that the ideal height of the working platform for a female worker is 0.81 (m) when the height of the worker falls within
the fifth percentile. Similarly, the ideal height of the working platform for a male worker is 1.12 (m) when the height of the worker
falls within the ninety-fifth percentile. Remembering that the fifth percentile for the height parameter is the value relative to which
only 5 % of the population considered has a lower height, and the ninety-fifth percentile is the value relative to which only 5 % of
the population considered has a higher height, and that, on average, men are taller than women, given the greater presence of men
in goods lifting jobs, a height of 1 (m) seemed to be the right compromise within the defined range 0.81 (m) - 1.12 (m). However, by
exploiting the adaptive mechanism devised in this work, the height can be adjusted according to the actual height of the operator.
In fact, the lifter is automated to ensure that the optimal height is reached and to guarantee a comfortable posture for the operator
based on a stable working platform having a constant height. To do this, the height variation is necessarily inversely proportional
to the load collocated on the platform.

In summary, the goal is to realize an empty working platform at an elevation of 1 (m), whereas a full platform with an assumed
maximum load of 1000 (kg) at an elevation of 0 (m). Since the surface area of a pallet is about 0.96 (m2), the density expected from
the goods will be around 1.04 (kg

/
dm3). In the case of working with different goods, thus of different densities from the one just

defined, the lifter will still yield the desired behavior by changing the control parameters.

4.2 CAD Model Development

At this stage, it is possible to carry out the analysis and description of the main mechanical components that form the adaptive
lifting table considered as the case study of this investigation. The CADmodel of the lifter developed in this work is shown in Figure
4.

The main components of the adaptive pantograph mechanism are described below, whereas the design choices and the cou-
plings are briefly outlined as well.

4.2.1 Structural Frame

The lower base has a standard shape (item 1 in Figure 4). In particular, it was designed according to construction needs with
flanges and brackets properly inserted, whose fixing is guaranteed by welding. The stability of the basement, and, as a result,
of the entire structure fastened to the ground, is guaranteed by large structural elements through screws, which are anchored
to the concrete base endowed with proper dowels. The basement is designed to be placed below the floor level. By doing so, in
correspondence with the closure of the scissor system, the upper base is tangent to the ground. The upper base, on the other hand,
deviates from the standard configuration to allow an optimal forcemeasurement of the load cells. This is done by inserting a tubular
structure to which the arms are constrained and then placing a cover fixed exclusively to the cells (item 3 in Figure 4). Welded tubular
connections were placed between the arms to guarantee synchronous movement (item 2 in Figure 4).

4.2.2 Mechanical Couplings

On the inner arms, welded pins were also inserted to provide the locking by interference with the outer arms, thereby ensuring
a rest position corresponding to the minimum height (Figure 5).

The couplings between the inner arms, the outer arms, and the basements were achieved in the same way by using pivots,
bushings, washers, and Seeger rings (Figure 5a). Given the short rotations that the arms perform, the use of bushings was chosen
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1

4

3

5.A

2

5.C

5.B

5.D

Fig. 4. CAD exploded view of the pantograph adaptive lifter mechanism with references to the various components. The body numbering is as follows:
1: Lower Base; 2: Arms; 3: Upper Base; 4: Electric Motor and Transmission; 5.A, 5.B, 5.C, and 5.D: Sensors.

(a) Revolute joint between the lower base and the outer arm. (b) Revolute joint between the inner arm and the connecting
rod.

(c) Revolute joint between the upper base and the inner arm.

Fig. 5. Mechanical joints disassembly.

because the use of bearings seemed exaggerated or not appropriate. The sliding of the connecting rod between the arms on the
lower base is ensured by the use of a double row of roller bearings to obtain maximum resistance under radial loads (Figure 5b). The
sliding of the outer arms with the upper basement is realized by using pins, a double row of bearings, and a Polytetrafluoroethylene
(PTFE) wheel (Figure 5c).
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4.2.3 Motor and Transmission

As far as the selection of the electric motor and the corresponding mechanical transmission is concerned, it is important to em-
phasize that one peculiarity of the adaptive mechanism developed in the present work is in the use of a rack and pinion mechanical
transmission (item 4 in Figure 4). This solution is not very common in this field due to the long strokes and high loads applied to the
platform. However, the mechanical system designed in this study was made as stable as possible with the introduction of proper
guides and reinforcement brackets (Figure 6).

Fig. 6. Top view of the mechanical transmission disassembly.

The rack is constrained through brackets to the connecting rod and tightened by friction, using two bolts, to reinforcements with
a square-shaped section, which runs along the entire connecting rod between the arms. The rack was also reinforced with brackets
along its entire length and blocked with countersunk head screws in blind holes, whereas the motor and the gearbox were locked
to the lower base. For the electric motor, a DC brushless motor was chosen, modulated with an inverter coupled to a reducer.

4.2.4 Electromechanical Sensors

A set of proprioceptive and exteroceptive sensors were considered in the design phase (Figure 7). These are a sensor for detecting
the height of the scissor platform, one for measuring the weight of the packages and the adaptation to the desired height, and the
last one for monitoring the perimeter security to stop the movement of the platform if there is interference in the closure of the
lifter. For the measurement of the desired height (item 5.A in Figure 4), redundant sensors are planned to be installed. These are
proximity sensor that provides the displacement of the connecting rod between the arms (Figure 7a). An absolute, non-incremental
encoder is used to indicate the displacement of the rack (item 5.B in Figure 4), and this is done by measuring the rotation of the
pinion (Figure 7b). Furthermore, in order tomeasure theweight of the packages between the upper basement and the cover (item 5.D
in Figure 4), load cells are employed (Figure 7c). For the perimeter sensors (item 5.C in Figure 4), photocells or photoelectric sensors
were installed and connected on the edge of the cover that blocks the system if any obstacle interferes with the signal between the
transmitter and receiver (Figures 7d, 7e). To do this, however, eight photocells will be installed, two for each edge. To reduce the costs
of these sensors, some appropriate reflectors were inserted in two diagonally opposite corners, thereby keeping only four sensors
in the remaining two corners. All the mechanical components are fixed to welded flanges. The sensors are glued with screws and
nuts, and the reflectors are strictly arranged at 45 (deg) for correct signal transmission.

5. SIMSCAPE MBD Model

5.1 Geometric Model Description

In this section, the adaptive mechanism considered as the case study of the paper is analyzed in detail in order to develop a
multibody model by using SIMSCAPE MULTIBODY.The scissor lift table of interest for this research work is modeled as a multibody
mechanical system composed of the following six rigid bodies: Lower Base (body i = 0), Inner Arm (body i = 1), Outer Arm (body
i = 2), Connecting Rod (body i = 3), Roller (body i = 4), and Upper Base (body i = 5). Therefore, in the analytical formulation of
the equations of motion, the mobile rigid bodies are five, where the number of rigid bodies is denoted with Nb = 5. To identify
the configuration of each body without ambiguity, a set of generalized coordinates must be selected such that the location of an
arbitrary point on the body can be described in terms of these generalized coordinates. For each rigid body, the number of these
coordinates, called Lagrangian coordinates, is nb = nd + np = 7. This is because, in the SIMSCAPE MULTIBODY software, the set
of Euler parameters, in number equal to np = 4, is employed to describe the three-dimensional pose of each body, whereas the
displacement coordinates necessary for identifying the absolute position of the reference point of each body are in number simply
equal to nd = d = 3. Thus, the total number of generalized coordinates of the multibody mechanical system is indeed equal to
nq = Nbnb = 35.

The generalized coordinates of the multibody system at hand, however, are not totally independent because of the presence
of the mechanical joints that connect adjacent bodies. Consequently, the motion of each component in the multibody system is
influenced by themotion of the others through the kinematic constraints, which restrict the displacement and velocity of each body.
In order to understand and control the motion of the multibody system, a group of independent generalized coordinates defined as
degrees of freedom can be identified. Each rigid body is connected to the other by amechanical joint that is mathematicallymodeled
as a kinematic constraint. A detailed discussion about the nature and the type of algebraic constraints necessary for modeling the
adaptive scissor mechanism as a multibody mechanical system is provided below.
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(a) Proximity sensor. (b) Encoder.

(c) Load cell. (d) Photosensor.

(e) Mirror.

Fig. 7. Disassembled view of all the equipped sensors.

5.2 Mechanical Constraints Identification

A constraint is a massless mechanical device constructed in such a way as to limit the relative motion between the rigid bodies
it connects [81]. Mechanical joints can be described mathematically by using a set of nonlinear algebraic constraint equations.
Assuming that these constraint equations are linearly independent, each constraint equation indirectly defines a possible system
motion since it directly formalizes themotions that are not permitted. In the analyzedmultibody system, there are eightmechanical
constraints and, therefore, the number of mechanical joints will be indicated by Nc = 8. The list of mechanical joints considered
for the multibody system under study is provided below, where nkc denotes the number of algebraic equations associated with the
generic kinematic constraint labeled with the integer k:

• Planar Joint 1 (Upper Base ik = 5 ∼ Roller jk = 4): nkc = 3.

• Planar Joint 2 (Lower Base ik = 0 ∼ Upper Base jk = 5): nkc = 3.

• Revolute Joint 1 (Inner Arm ik = 1 ∼ Connecting Rod jk = 3): nkc = 5.

• Revolute Joint 2 (Roller ik = 4 ∼ Outer Arm jk = 2): nkc = 5.

• Revolute Joint 3 (Lower Base ik = 0 ∼ Outer Arm jk = 2): nkc = 5.

• Revolute Joint 4 (Outer Arm ik = 2 ∼ Inner Arm jk = 1): nkc = 5.

• Revolute Joint 5 (Upper Base ik = 5 ∼ Inner Arm jk = 1): nkc = 5.

• Prismatic Joint (Connecting Rod ik = 3 ∼ Lower Base jk = 0): nkc = 5.

In the initial configuration of the lifting table assumed in themultibodymodel constructed by employing SIMSCAPEMULTIBODY,
Table 3 shows the constraint types, the bodies interconnected by the kinematic pairs, and the position of the reference system
connected to the base port of each constraint block.

In the geometric formulation of the kinematic joints, the absolute rotation axis of each revolute joint is the z-axis, the absolute
axis orthogonal to Planar Joint 1 is the y-axis, the absolute axis orthogonal to Planar Joint 2 is the z-axis, and the absolute translation
axis of the Prismatic Joint is the x-axis.

Considering the normalization conditions of each set of Euler parameters, the total number of intrinsic constraint equations is
nc,Φ = Nb = 5. By inspecting the type and the number of kinematic constraints reported in Table 3, the total number of extrinsic
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Table 3. Constraint positioning data in the SIMSCAPE MULTIBODY environment.

CONSTRAINT
TYPE

BODIES CONNECTED
BY THE CONSTRAINT

ABSOLUTE CONSTRAINT
POSITION (mm)

Planar Joint 1
(Roller,

Upper Base)

[
−62.5 1322.0 0

]T
Planar Joint 2

(Lower Base,
Upper Base)

[
−62.5 1367.0 0

]T
Revolute Joint 1

(Inner Arm,
Connecting Rod)

[
624.0 80.0 −413.0

]T
Revolute Joint 2

(Roller,
Outer Arm)

[
624.0 1267.0 −443.0

]T
Revolute Joint 3

(Lower Base,
Outer Arm)

[
−765.0 80.0 −542.0

]T
Revolute Joint 4

(Inner Arm,
Outer Arm)

[
−70.6 674.0 −443.0

]T
Revolute Joint 5

(Upper Base,
Inner Arm)

[
−765.0 1267.0 −413.0

]T
Prismatic Joint

(Connecting Rod,
Lower Base)

[
−105.0 94.0 22.5

]T

constraint equations is nc,Ψ =
Nc∑
k=1

nkc = 36. As a result, the total number of algebraic constraint equations that appear in the

multibody model is nc = nc,Φ + nc,Ψ = 41.
The thorough analysis of the kinematic constraints provided above has a twofold objective, that is, to construct an accurate

multibody model of the adaptive lift table and to correctly identify the degrees of freedom of this system considered as the case
study. It is, in fact, apparent that the lift mechanism has only one degree of freedom. Therefore, the mechanical joints forming the
multibody model described before lead to a redundant set of algebraic equations. This can be readily proved through the following
reasoning. In general, the number of system degrees of freedom is defined as the number of the system coordinates minus the
number of independent constraint equations. For a multibody mechanical system endowed with nq generalized coordinates and
nc independent constraint equations, the number of system degrees of freedom is given by nf = nq − nc. For the rigid multibody
system at hand, one obtains nf = −6, which is obviously an incorrect result since the redundant constraint equations where not
identified and discarded. This means that there are in total seven redundant constraint equations, where, for the sake of clarity, this
number is denoted with nr .

The list of redundant constraint equations associated with each mechanical joint is provided below, where nkr denotes the
number of algebraic equations associated with the generic kinematic constraint labeled with the integer k:

• Planar Joint 1 (Upper Base ik = 5 ∼ Roller jk = 4): nkr = 1.

• Planar Joint 2 (Lower Base ik = 0 ∼ Upper Base jk = 5): nkr = 3.

• Revolute Joint 1 (Inner Arm ik = 1 ∼ Connecting Rod jk = 3): nkr = 0.

• Revolute Joint 2 (Roller ik = 4 ∼ Outer Arm jk = 2): nkr = 0.

• Revolute Joint 3 (Lower Base ik = 0 ∼ Outer Arm jk = 2): nkr = 0.

• Revolute Joint 4 (Outer Arm ik = 2 ∼ Inner Arm jk = 1): nkr = 0.

• Revolute Joint 5 (Upper Base ik = 5 ∼ Inner Arm jk = 1): nkr = 0.

• Prismatic Joint (Connecting Rod ik = 3 ∼ Lower Base jk = 0): nkr = 3.

The redundant constraint equations were identified by reasoning sequentially. The revolute joints do not create redundancies
as each body is free to rotate around its own axis. The Prismatic Joint adds redundant constraint equations involving the rotations
around the absolute x-axis and y-axis, as well as the translation along the absolute z-axis, which are already constrained by Revolute
Joint 1. Planar Joint 1 adds redundant constraint equations involving the rotation around the absolute x-axis, already constrained
by the presence of Revolute Joint 5 and Revolute Joint 2. The constraint equations added by Planar Joint 2 are instead redundant
as they involve the rotations around the absolute x-axis and y-axis, as well as the translation along the absolute z-axis because of

the presence of Revolute Joint 5. Consequently, the total number of redundant constraint equations is nr =
Nc∑
k=1

nkr = 7, while the

effective number of degrees of freedom nf,e = nf + nr = 1. It is important to note that the inclusion of the Planar Joint 2 in the
SIMSCAPE MBD model, despite its total redundancy from a kinematic viewpoint, is justified by the need to maintain a convenient
reference for performing measurements in the computer implementation of the multibody model.

Finally, to complete the description of the multibody model implemented in the SIMSCAPE MULTIBODY software, the type and
the number of external actions acting on the multibody system are the gravity force acting on each rigid body and the control forces
acting on the Connecting Rod through the Prismatic Joint, being Ne = Nb = 5 the total number of external forces and Na = 1 the
total number of control actions.
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5.3 MBD Model Development

For constructing the multibody model in SIMSCAPE MULTIBODY starting from the geometric model originally developed in
SOLIDWORKS, a general simplification was necessary because of the problems deriving from the computer simulation of a complex
model having redundant constraints. To avoid approximation errors due to the numerical integration of an articulated dynamical
model, the recognition of the kinematic constraints not useful for simulating the behavior of the multibodymodel was eluded, since
this process also slows down the dynamical simulations. Despite the simplifications assumed for the multibody model, the same
material properties as for the not simplified model were used to not affect the dynamic response of the dynamical system.

Froma kinematic point of view, themain simplificationmadewith respect to the SOLIDWORKSmodel is that the rack-and-pinion
type transmission, and its corresponding block implemented in SIMSCAPE MULTIBODY, were replaced with a simplified transmis-
sion based on an equivalent prismatic joint. More specifically, between the base and the connecting rod of the multibody model
developed using SIMSCAPE MULTIBODY, a prismatic joint was considered to guarantee only the translation between the surfaces of
the connecting rod of the arms, which simulate those of the rack and the surfaces obtained on the base that simulates those of the
pinion, so that the contact occurs on the nominal diameter or pitch diameter.

TheMBDmodel used in SIMSCAPEMULTIBODY,properly simplified from the CADmodel constructed in SOLIDWORKS, is reported
in Figure 8.
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(a) Position and orientation of the reference frames of the constraints in the initial config-
uration.
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(b) Position and orientation of the CAD frame of each body in the initial configuration.

Fig. 8. Multibody model of the adaptive lifting table developed in the SIMSCAPE MULTIBODY environment. The overbar symbols in Figure 8a refer to
reference systems that in the constraint blocks in SIMSCAPE MULTIBODY are connected to the follower port, the others to the base port. In Figure 8b,
the body numbering is as follows: 1: Lower Base; 2: Upper Base; 3: Inner Arm; 4: Outer Arm; 5: Roller; 6: Connecting Rod.

During import from SOLIDWORKS, the CAD reference frame is self-generated by SIMSCAPE MULTIBODY and, therefore, it will
be referred to as the CAD frame. In the computer simulations performed using SIMSCAPE MULTIBODY, the initial configuration
considered for the multibody system at hand is that of maximum pantograph opening, that is, that of maximum lifting platform
height.

The inertia properties of the rigid bodies used for modeling the mechanical components of the lifting mechanism are shown in
Table 4, where the inertia matrices and the coordinates of the centroid reference system are both expressed with respect to the CAD
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frames of each body.

Table 4. Geometric and inertial data of rigid bodies used in the SIMSCAPE MULTIBODY model.

BODY
BODY

MASS (kg)

INERTIA
MATRIX (kg × mm2)

CENTROID LOCAL
POSITION

COORDINATES (mm)

Lower Base m = 402.0

Ixx= 6.038 · 107

Iyy= 1.690 · 108

Izz= 1.097 · 108

Ixy=Iyx= 6.441 · 102

Ixz=Izx= −8.244 · 102

Iyz=Izx= 1.426 · 105

x̄ = −7.2

ȳ = 27.1

z̄ = 0

Upper Base m = 84.0

Ixx= 2.097 · 107

Iyy= 3.836 · 107

Izz= 1.759 · 107

Ixy=Iyx= −1.124 · 105

Ixz=Izx= 3.470 · 10−2

Iyz=Izx= −15.600

x̄ = 0

ȳ = 0

z̄ = 0

Inner Arm m = 71.2

Ixx= 1.265 · 107

Iyy= 2.303 · 107

Izz= 1.055 · 107

Ixy=Iyx= 0
Ixz=Izx= 0

Iyz=Izx= 4.292 · 105

x̄ = 259.0

ȳ = −86.4

z̄ = 428.0

Outer Arm m = 79.6

Ixx= 1.495 · 107

Iyy= 2.708 · 107

Izz= 1.231 · 107

Ixy=Iyx= 0
Ixz=Izx= 0

Iyz=Izx= 5.025 · 105

x̄ = −287.0

ȳ = −90.2

z̄ = 458.0

Roller m = 3.3

Ixx= 3.348 · 105

Iyy= 1.684 · 103

Izz= 3.348 · 105

Ixy=Iyx= 0
Ixz=Izx= 0
Iyz=Izx= 0

x̄ = 0

ȳ = 0

z̄ = −483.0

Connecting Rod m = 28.2

Ixx= 1.822 · 106

Iyy= 2.380 · 106

Izz= 0.844 · 105

Ixy=Iyx= 5.198 · 104

Ixz=Izx= 0
Iyz=Izx= 0

x̄ = −265.7

ȳ = −16.1

z̄ = 0

Table 5, on the other hand, shows the rotation matrices and the absolute position of the CAD reference frame with respect to
the inertial reference frame.

In the initial modeling endeavor, the implementation of themultibodymodel performed by using SIMSCAPEMULTIBODYwanted
to exactly reproduce the same type of mechanical transmission. However, once the conversion of the model was carried out, imple-
mentation issues were encountered in the simulation of the control phase, with the impossibility of inserting the initial conditions
leading to unsatisfactory results. As shown in Table 6, despite the drawback, the first inverse dynamics analysis, with the use of the
”Gear - Rack and Pinion” type constraint block in SIMSCAPE MULTIBODY, provided reliable results, which given the high fidelity of
the model to reality.

The numerical results shown inTable 6 are similar to those of the simplifiedmodel, in which the implementation of the complete
model was carried out. It must be emphasized that, despite this simplification, the torque values obtained before and after the
simplification are equal, which demonstrates the correctness of the simplification carried out. This fact proves the reliability of the
results obtained from the simplified multibody model, as reported in Table 6.
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Table 5. Position and orientation vectors of the initial configuration of the rigid bodies in the SIMSCAPE MULTIBODY model.

BODY

CAD FRAME
ROTATION MATRIX

A =
[

α β γ
] CAD FRAME

ABSOLUTE POSITION
COORDINATES (mm)

Lower Base

α =
[

1 0 0
]T

β =
[

0 1 0
]T

γ =
[

0 0 1
]T

x = 0

y = 0

z = 0

Upper Base

α =
[

0 0 1
]T

β =
[

0 1 0
]T

γ =
[

1 0 0
]T

x = −63

y = 1367

z = 0

Inner Arm

α =
[

0.569 −0.822 0
]T

β =
[

0.822 0.569 0
]T

γ =
[

0 0 1
]T

x = −510

y = 957

z = −428

Outer Arm

α =
[

−0.569 −0.822 0
]T

β =
[

−0.822 0.569 0
]T

γ =
[

0 0 −1
]T

x = −275

y = 957

z = 458

Roller

α =
[

1 0 0
]T

β =
[

0 0 −1
]T

γ =
[

0 1 0
]T

x = −20

y = 1267

z = 483

Connecting Rod

α =
[

0 0 1
]T

β =
[

0 1 0
]T

γ =
[

−1 0 0
]T

x = −20

y = 80

z = 0

Table 6. Comparison table between the torque obtained by computer simulations using SIMSCAPE MULTIBODY on the rack and pinion mechanism and
that obtained from the equivalent mechanism.

LOAD (kg)
TORQUE ONTHE

EQUIVALENT MEMBER (N × m)

TORQUE ON
RACK AND PINION (N × m)

RELATIVE
ERROR (%)

1000 0 0 0
750 855.9 858.3 0.28
500 368.8 369.4 0.16
250 148.9 149.1 0.13
0 37.9 38.0 0.26

6.Numerical Results and Discussion

6.1 General Approach Followed for Performing the Computer Simulations

This section deals with the final multibody models used for computer simulations and the results obtained through numerical
experiments. Because a simulated object replaces the mechanical system that needs to be studied, simulation modeling represents
a modern research technique. To acquire useful insights into the behavior of mechanical systems being studied, several numerical
experiments can be quickly carried out with its virtual prototype and, therefore, it is practical to apply simulation modeling to
resolve the given tasks. The information that can be extracted after performing the required computations is relevant for a variety
of subsystems, especially for actuator selection and the subsequent control law definition. In addition, the CAD programs make it
possible to choose the design parameters that have a direct impact on the dynamics of a three-dimensional model, such as mass,
moments of inertia, and the location of the center of mass of each component.

Software like SOLIDWORKS, MATLAB, and SIMULINK can be used to simulate the motion and the degrees of freedom allowed
for the articulated mechanical system analysis. In particular, a computational tool of the SIMULINK/MATLAB software suite, the
SIMSCAPE MULTIBODY software-modeling tool, offers block simulation of complicated dynamic systems based on visually oriented
programming techniques. The interaction between SIMSCAPEMULTIBODY and other SIMULINK/MATLAB library elements enhances
simulation possibilities. For example, because the moment of inertia and the coordinates of each connected system part must
be determined, modeling a dynamic system only with the use of SIMULINK or MATLAB can be challenging. To solve this issue,
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MathWorks has developed a plugin software for exporting CAD models that builds dynamic models in the SIMSCAPE MULTIBODY
environment from a three-dimensional model created in the SOLIDWORKS CAD system.

Somemodeling programs can be difficult to use precisely because of the difficulty of creating and interpreting the structure of the
mechanical system to be simulated. SIMSCAPE MULTIBODY, on the other hand, allows for the elimination of this issue through the
design of a flowchart that recognizes and connects constraints to the various bodies by importing the 3D model from SOLIDWORKS.
The conversion is based on the import function, which takes as its main input the file name of the multibody XML description.
The data necessary to reconstruct the original model, or substantially approximate it if the model has unsupported constraints, is
transferred to the SIMSCAPE MULTIBODY application via an XML file. The translation of the CADmodel consists of two steps: export
and import. The CAD assembly model is transformed into a set of STEP or STL part geometry files and a multi-part XML description
file during the export process. The part description and geometry files are transformed into the SLX SIMSCAPE MULTIBODY model
and the M-data file during the import process [104]. The model gets all the input parameters of the block from the data file.

It is also important to note that the synergy between the CAD environment of SOLIDWORKS and the simulation of SIMSCAPE
MULTIBODY allows for analyzing the most complex mechanical systems since one of the most challenging aspects of the modeling
process of articulated systems is the creation of the model itself and the connection of the various bodies through constraints and
the consequent verification of the couplings. However, this work can be much easier on CAD software because they are optimized
for this purpose.

6.2 Description of the Specific Problems Analyzed through Numerical Experiments

The lifting system considered as the case study of this investigation is at the minimum height when the load on it is maximum,
namely 1000 (kg), up to the maximum height of 1 (m) when it is completely unloaded [105]. In the intermediate steps, the height
reached by the lifter is a function of the load on the platform. More specifically, four load steps from 0 (kg) to 1000 (kg) were
considered, equally spaced, and corresponding to four height steps from 1000 (mm) to 0 (mm). The various load steps analyzed
through dynamical simulations are shown in Table 7.

Table 7. Platform height variation depending on the load.

LOAD (kg) PLATFORM HEIGHT (m)

1000 0
750 0.25
500 0.50
250 0.75
0 1.00

For a single change in the loadmade in one step, and correspondingly in the elevation of the platform, four loading and unloading
cases were considered. The results and parameters obtained for all load and elevation conditions described in Table 7 are discussed
in detail below, thereby keeping in mind that the conclusions drawn from this analysis are also valid for all the other cases.

The four scenarios considered are the most onerous in terms of actuation forces and applied loads acting on the structure of the
adaptive lifting mechanism. These are an impulsive load from 750 (kg) to 1000 (kg), a progressive load from 750 (kg) to 1000 (kg), an
impulsive unload from 1000 (kg) to 750 (kg), and a progressive unload from 1000 (kg) to 750 (kg). The adjective ’impulsive’ refers to
the fact that the loading or unloading is done instantaneously of an aliquot of 250 (kg), while the adjective ’progressive’ refers to the
law of loading or unloading varying over time as an inclined ramp of 5 (kg/s) for a total of 250 kilograms in 50 seconds. Moreover,
in the latter case corresponding to a progressive load insertion, the reference used for error calculation is constant. For example, in
the case of loading from 750 (kg) to 1000 (kg), a ramp load law was used, as previously described, but a reference position of zero,
corresponding to a zero height of the lift table, is assumed as the constant reference value to be reached.

The strategy that led to the definition of the numerical results for each case is discussed in detail as follows. The preliminary
numerical solution of an inverse dynamics problem is necessary to determine a feedforward control action, serving as a guiding
controller, that will be subsequently combined with a feedback control action, serving as a compensating controller, evaluated
through the solution of a forward dynamics problem. First, the analysis of the laws of motion of the system starting from the
evaluation of an inverse dynamics problem is represented by the block diagram shown in Figure 9.

The various heights to be reached were taken as reference and the corresponding displacement that the pinion made on the
rack, namely the rack displacement, is measured in the CAD model. Imposing the corresponding displacement to the Prismatic
Joint, the force to be applied to keep the desired height is measured in the SIMSCAPE MULTIBODY model. The results obtained from
this analysis are then useful for solving the subsequent controlled dynamics problem. The measured rack displacements imposed
on the Prismatic Joint as initial conditions are shown in Table 8.

Table 8. Initial condition on the equivalent transmission mechanism for the various load steps.

LOAD (kg)
TRANSMISSION INITIAL

CONDITION (mm)

1000 0
750 57.4
500 167.5
250 346.9
0 643.9

As regards the problem of the forward dynamics analysis of the present multibody mechanical system, this process cleverly
exploits the results obtained in the previous inverse dynamics analysis. A schematization of themodel used for the forward analysis
is shown in Figure 10.

The forward dynamics analysis is focused on the implementation of a PD feedback control system, which, by appropriately
evaluating the error on the displacement of the Prismatic Joint, and, by tuning the controller, provides an effective controller based
on a combination of a Feedforward Force (FF) and a Feedback Force (FB) [13]. By doing so, the control action applied to the multibody
system will be:
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Fig. 9. Schematic of the SIMSCAPE MULTIBODY model assumed as the reference model for the inverse dynamics analysis.
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Fig. 10. Schematic of the SIMSCAPE MULTIBODY model assumed as the reference model for the forward dynamics analysis.

-subtracted from the force in FF in the load case, when the lift height decreases. The FF controller implemented, as well as the
reference for the error calculation, will be the one corresponding to the height to be reached. Considering that the FF increases as
the height of the lifter decreases, the FB force is subtracted, being this control action proportional to the error and its derivative;

+added to the force in FF in the unloading case, when the lift height increases. The FF controller implemented, as well as the
reference for calculating the error, will be the one corresponding to the height to be reached. Considering that the FF decreases as
the lift height increases, the FB force is added, being this control action proportional to the error and its derivative;

It is, therefore, clear that the height of the lifter, which will be increased or decreased by 0.25 (m) at each step, must depend on
the height reached in the previous step since the force in FF and the initial conditions to be applied for a correct implementation
vary according to it.
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6.3 Results of the Dynamical Simulations

In this section, to assess the practical feasibility of the control actions devised in this work, as well as the structural integrity of
the adaptive mechanism, the results obtained for the four case studies in the worst-case scenario are presented, corresponding to
steps 750 (kg) - 1000 (kg) in the loading cases and 1000 (kg) - 750 (kg) in the unloading cases. In the two loading scenarios, the time
history of the total control force acting on the lifter mechanism is the sum of the FF and FB contributions [15]. In the two unloading
scenarios, on the other hand, the time history of the total control force acting on the lifter mechanism is the difference between the
FF and FB contributions. The numerical results found in MATLAB through thorough numerical experiments concerning all the most
relevant operative scenarios based on the SIMSCAPE multibody model developed in this investigation are reported and discussed in
detail below.

6.3.1 Impulsive Loading Scenario

In the impulsive loading case, the time history of the lift height is shown in Figure 11, where Figure 11a represents the platform
displacement and Figure 11b represents the platform velocity.
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(b) Platform velocity.

Fig. 11. Time evolution of the lift height displacement and velocity for the impulsive loading case.

As shown in Figure 12 concerning the impulsive loading case, the time history of the control force acting on the lifter mechanism
is represented in Figure 12a, while the time history of the error of the height of the lifter with respect to the desired setpoint is
represented in Figure 12b.
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(a) Lift force.
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(b) Position error.

Fig. 12. Time evolution of the lift force and time evolution of the position error for the impulsive loading case.

The numerical results of the dynamical simulations shown in Figures 11 and 12 demonstrate the effectiveness of the proposed
control strategy in the case of the impulsive loading scenario.

6.3.2 Progressive Loading Scenario

In the progressive loading case, the time history of the lift height is shown in Figure 13, where Figure 13a represents the platform
displacement and Figure 13b represents the platform velocity.
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Fig. 13. Time evolution of the lift height displacement and velocity for the progressive loading case.

As shown in Figure 14 concerning the progressive loading case, the timehistory of the control force acting on the liftermechanism
is represented in Figure 14a, while the time history of the error of the height of the lifter with respect to the desired setpoint is
represented in Figure 14b.
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Fig. 14. Time evolution of the lift force and time evolution of the position error for the progressive loading case.

The numerical results of the dynamical simulations shown in Figures 13 and 14 demonstrate the effectiveness of the proposed
control strategy in the case of the progressive loading scenario.

6.3.3 Impulsive Unloading Scenario

In the impulsive unloading case, the time history of the lift height is shown in Figure 15,where Figure 15a represents the platform
displacement and Figure 15b represents the platform velocity.
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Fig. 15. Time evolution of the lift height displacement and velocity for the impulsive unloading case.
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As shown in Figure 16 concerning the impulsive unloading case, the time history of the control force acting on the lifter mech-
anism is represented in Figure 16a, while the time history of the error of the height of the lifter with respect to the desired setpoint
is represented in Figure 16b.
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Fig. 16. Time evolution of the lift force and time evolution of the position error for the impulsive unloading case.

The numerical results of the dynamical simulations shown in Figures 15 and 16 demonstrate the effectiveness of the proposed
control strategy in the case of the impulsive unloading scenario.

6.3.4 Progressive Unloading Scenario

In the progressive unloading case, the time history of the lift height is shown in Figure 17, where Figure 17a represents the
platform displacement and Figure 17b represents the platform velocity.
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Fig. 17. Time evolution of the lift height displacement and velocity for the progressive unloading case.

As shown in Figure 18 concerning the progressive unloading case, the time history of the control force acting on the lifter mech-
anism is represented in Figure 18a, while the time history of the error of the height of the lifter with respect to the desired setpoint
is represented in Figure 18b.
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Fig. 18. Time evolution of the lift force and time evolution of the position error for the progressive unloading case.

The numerical results of the dynamical simulations shown in Figures 17 and 18 demonstrate the effectiveness of the proposed
control strategy in the case of the progressive unloading scenario.

6.4 Final Remarks

A brief discussion on the quality of the numerical results found through numerical experiments is proposed herein.
To facilitate understanding of the results obtained in all the scenarios analyzed in the paper, the load curves as a function of

time are shown in Figure 19 for each case. In Figure 19, the solid line colored black refers to the impulsive loading law, the dashed
line colored black refers to the progressive loading law, the solid line colored orange refers to the impulsive unloading law, and the
dashed line colored orange refers to the progressive unloading law.
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Fig. 19. Time evolution of the lifted load for all the operative scenarios analyzed in the paper.

By comparing Figure 19 with Figures 11, 13, 15, and 17, an analogy can be seen between the load laws and the time evolution of
the platform displacement and velocity. Specifically, in all the impulsive cases, the settling time is low and in line with the impulsive
loading laws. In all the progressive cases, on the other hand, the settling time is higher due to the progressive loading laws.

Regarding the platform height in the cases of impulsive loading and unloading scenarios, shown respectively in Figure 11 and
Figure 15, it can be seen that reaching the desired setpoint value occurs in about 10 seconds in both cases. For safety and ergonomic
reasons, this is deemed an appropriate time to travel 0.25meters. On the other hand, in the cases of progressive loading and unload-
ing scenarios, shown respectively in Figure 13 and Figure 17, the time evolution of the platform height is much slower. However, this
is assumed to be in line with a gradually increasing/decreasing loading process. In all cases, the desired height is achieved smoothly
and with a zero tangent or, equivalently, with a sufficiently low velocity.

Regarding the total control force, when the load increases, by observing Figure 12a and from Figure 14a, an asymptotic trend is
found at the value of FF corresponding to the weight of 1000 (kg) given inTable 10, corresponding to the value of control force suitable
for holding the platform at the altitude of 0 meters. When the load decreases, on the other hand, by observing Figure 16a and from
Figure 18a, an asymptotic trend is found at the value of FF corresponding to the weight of 750 (kg) given in Table 10, corresponding
to the value of control force suitable for holding the platform at the altitude of 0.25 (m).

The error, evaluated on the prismatic joint, as expected, has an opposite trend to the lift height. In all cases, the error achieves
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zero value, thereby demonstrating the correct functioning of the control system devised in this investigation. When estimating
the power required to satisfy the loading/unloading laws found, referring to the heaviest conditions, i.e., those of impulsive cargo
loading, from 750 (kg) to 1000 (kg), it is advisable to use a motor with a power rating of at least 1.6 (kW ).

The calibration of the control parameters for the various case studies was done empirically starting from an estimate carried out
with a semi-empirical criterion such as Ziegler-Nichols, to indicate the order of magnitude. Then, the parameters were calibrated
for the individual case. The final refined sets of control parameters found in this work are shown in Table 9.

Table 9. Feedback control parameters employed for all the loading and unloading scenarios considered in the numerical experiments.

IMPULSIVE
UNLOADING (kg)

Kp (kN/m) Kd (kN × s/m)

1000-750 900 800
750-500 400 500
500-250 400 400
250-0 400 400

IMPULSIVE
LOADING (kg)

Kp (kN/m) Kd (kN × s/m)

0-250 400 400
250-500 400 500
500-750 900 800
750-1000 5500 6200

PROGRESSIVE
UNLOADING (kg)

Kp (kN/m) Kd (kN × s/m)

1000-750 1050 7500
750-500 165 700
500-250 55 400
250-0 45 650

PROGRESSIVE
LOADING (kg)

Kp (kN/m) Kd (kN × s/m)

0-250 400 400
250-500 400 500
500-750 900 800
750-1000 5500 6200

The proportional-derivative control parameters reported in Table 9 were designed and refined through numerical experiments
to guarantee a smooth and sufficiently slow set of laws of motion. In particular, a proportional-derivative controller was chosen for
the architecture of the control system, thereby omitting the integral term that is generally needed to cancel the asymptotic error.
However, in virtue of the presence of a feedforward control action, the feedback control law of this type allowed for the cancellation
of the error and the achievement of the desired height of the lifting platform. The results obtained in the inverse dynamic analysis
regarding the feedforward action for both loading and unloading cases are summarized in Table 10. In Table 10, the control torque
was calculated from the control force, previously obtained through computer simulations, by multiplying the force magnitude by
the nominal radius of the rack and pinion mechanical transmission.

Table 10. Feedforward control forces and torques employed for all the loading and unloading scenarios considered in the numerical experiments.

UNLOADING (kg) DISPLACEMENT (m) FORCE (N) TORQUE (N × m)

1000 0 - -
750 0.25 28530 855.90
500 0.50 12290 368.80
250 0.75 4964 148.90
0 1.00 1264 37.91

LOADING (kg) DISPLACEMENT (m) FORCE (N) TORQUE (N × m)

0 1.00 1264 37.91
250 0.75 4964 148.90
500 0.50 12290 368.80
750 0.25 28530 855.90
1000 0 87760 2633

As far as the practical realization of the control system that guides the motion of the adaptive platform is concerned, a Pro-
grammable Logic Controller (PLC), equipped with Input/Output (I/O) functionalities, is needed. Through the input functions, the
board receives signals collected from external sensors such as load cells, proximity sensors, encoders, and safety photoelectric sen-
sors. The behavior of the whole adaptive system will vary according to the values of the signals coming from the sensors, which are
elaborated by the control logic, as well as considering the operations determined by the program running at that moment and as a
result of the interaction with the operator. The output signal is then sent to an inverter that will drive the actuator, such as a DC
brushless motor, in the desired behavior to adjust the height of the lifting table. The practical implementation by using, for instance,
a PLC or a modern microcontroller for realizing the control laws devised in this investigation will be the object of future research
works.
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7. Summary, Conclusions, and FutureWork

The main goal of this work is to systematically perform the computer-aided design, the multibody dynamic analysis, and the
proportional-derivative control synthesis of an adaptive mechanism serving as a lifting table. For this purpose, the paper describes
first the methodological approach, the fundamental analytical methods, and the numerical techniques thoroughly used in this re-
search work. Subsequently, the paper reports the process of the virtual model development and the presentation of the results
found through numerical experiments obtained in this research study.

In this work, the fundamental steps concerning the development of a virtual prototype of a smart mechanism serving as an
adaptive lifting table are illustrated. For this purpose, the computational tools of computer-aided design, analysis, and control are
employed in an integrated framework, which revolves around the use of the Multibody System Dynamics (MBD) approach to the
analysis of articulated mechanical systems. Due to continuous studies and the high level of development of Computer-Aided De-
sign (CAD) systems, full-scale models and experiments can be reduced to the minimum or, eventually, eliminated. Consequently,
the mechanism designer must be aware of the kinematic and dynamic properties of the designed mechanism in order to predict
how it will operate in real-world situations. Therefore, the scope of the paper fits in a seamless manner in the unified context of
computer-aided design, multibody dynamics, and nonlinear control, which represent the main areas of interest for the research
endeavors of the authors.

The main focus of this investigation is to devise a new solution for the redesign of an existing mechanism that is aimed at satis-
fying the safety and ergonomic needs of human operators in an industrial context. In particular, this paper starts with a study of the
disorders and hazards that an operator may contract in the workplace if appropriate ergonomic conditions are not met, especially
with regard to lifting and manual handling of goods, all aggravated by the repetitiveness of the operation. As mentioned before, one
possible solution for the issue addressed in this study is the development of an adaptive mechanism. The solution in most of the
cases found in engineering applications is, indeed, the use of lifting platforms with self-adaptive behavior. In this vein, the goal of
automatically adapting the height of the lift table analyzed in this work is to limit the bending, stress, and strain on the trunk of
the human operator as much as possible. More specifically, an intelligent control based on a proportional-derivative error logic was
conceived in this work, thereby adapting the lift height according to the weight detected on the platform. For example, an increase
in weight implies more goods on the platform. Consequently, one needs to adjust the height of the platform to keep the workspace
plane at a constant height. Therefore, this is the main idea behind the concept of the adaptive mechanism designed and tested in
this investigation.

In this paper, the development of a virtual prototype of an adapting lift table is presented. To this end, a detailed full-size three-
dimensional CAD model was developed first by using SOLIDWORKS.The virtual prototype of the mechanical system of interest was
designed in such a way as to allow for a one-meter change in elevation. In the construction of the CAD model in a virtual environ-
ment, special care was devoted to the assembly/disassembly of the mechanical components that form the adaptive mechanism,
as well as to the collocation of the sensors necessary for the proper operation of the machine. Subsequently, a multibody model
composed of only rigid bodies was developed considering the CAD model of the lifting platform. To achieve this goal, adopting first
some necessary simplifications for the sake of easier computer implementation, a multibody mechanical model having the same
geometric characteristics as the original CAD model was imported into the SIMSCAPE MULTIBODY software based on the MATLAB
environment. By doing so, several dynamical simulations were performed on the simplified multibody model, which allowed for a
convenient determination of the control parameters necessary to guide the self-adaptive lifting mechanism in the different scenar-
ios considered in this investigation. The dynamic behavior of the controlled lift platform in all the cases considered in this work was
extensively illustrated in the paper, and the corresponding laws of motion for the principal mechanical components were shown.
Therefore, the numerical results presented in the manuscript demonstrate the effectiveness of the control system synthesized in
this study.

The research work carried out in this investigation fits into all engineering fields where the task of frequently lifting heavy goods
is common. In summary, this study presents an interesting solution to the hazards to which human operators are subjected in
industrial workplaces. However, in the next research works, several interesting tracks for future investigations could be followed.
Although limited by the number of cases, as well as by the constraints in height and weight that were taken into consideration,
the systematic analysis and design methodology utilized in this paper is totally applicable to other different case studies. In this
direction, the main insights for the continuation and deepening of the work already done are projected, thereby considering a con-
stant lift height other than 1 (m), a load greater or less than 1000 (kg), and the volume/density of the goods different from that
considered in the paper. In this respect, it is important to note that considering the three variables mentioned above, only two are
independent of each other. Additionally, taking into account alternative load laws that differ from those considered in this work is
also of utmost importance for the implementation of the proposed design to other engineering applications found in the industrial
field. For instance, by evaluating the weight measured by the load cells serving as force sensors, special algorithms could also be
devised to automatically determine the proper loading/unloading time laws that the human operator could potentially adopt, and,
in comparison with those already implemented in the controller, perform the one that best fits the detected weight. These issues
will be addressed in future investigations. Future research work will be also focused on the Integration of Computer-Aided Design
and Analysis (I-CAD-A) for the development of nonlinear control systems suitable for articulated mechanical systems.
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