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Abstract. This article proposes a new algorithm for computing dispersion curves of ultrasonic guided waves in multi-layered 
composites with large number of layers. The algorithm is based on balancing the eigenvalue problem of the Spectral Collocation 
Method (SCM) formulation. The SCM has proven effective in analyzing single-layer and simple waveguides. However, it struggles 
with large multi-layer structures due to numerical instability caused by irregular and sparse matrices in the eigenvalue problem. 
The proposed algorithm for balancing has significantly reduced both the conditioning measure and the matrix norm in the matrix 
system. The optimization of spectral formulation enables accurate calculation of dispersion curves and characterization of 
displacement/stress profiles using Matlab software. This precise characterization and mode separation are essential for selecting 
ultrasonic sensors for damage detection.  A comparison was made with Dispersion Calculator (DC) software. The algorithm was 
first validated using a hybrid multi-layered composite [CFRP-Al-CFRP-Al], which was successful. The validated algorithm was then 
quantitatively evaluated using a cross-play laminate T800M913 [0/90/0/90] in terms of three parameters: Number of collocation 
points, wave propagation direction and thickness. The algorithm is then applied to a large number of layers using three 
configurations: Symmetric layup T80M913[0/90]10s, hybrid layup [CFRP-Al]50 and challenging layup T800M913[0/90]100. The study 
found that the balancing algorithm, when combined with the SCM, is effective for structures with a large number of layers. Finally, 
optimizing the SCM will enhance its competitiveness as an effective tool in ultrasonic non-destructive testing for the studied 
structures of great industrial interest. 

Keywords: Dispersion curves, Spectral collocation method, Balancing eigenvalue problem. Guided waves, Multi-layered composites. 

1. Introduction 

In the field of Non-Destructive Testing (NDT) [1], the study of Ultrasonic Guided Waves (UGW) in solid media has gained 
significant importance. Researchers have made tremendous progress in using mode and frequency selection to address various 
challenges in applications for pipe, rail, and plate inspection, as well as numerous multilayer engineering structures. In order to 
achieve long-distance inspection and monitoring of layered structures, it is necessary to study the propagation characteristics of 
guided waves in these structures. In this context, Lamb [2] waves are widely used in NDT. They are dispersive and have the unique 
property of moving the entire thickness of the medium. Therefore, the accurate calculation of dispersion curves and the associated 
displacement and stress profiles is necessary for the study of Lamb wave propagation to ensure reliable materials testing. 

Historically, Thomson [3] was the first to introduce the method in 1950 to solve the problem of wave propagation in a layered 
medium composed of an arbitrary number of isotropic layers. This technique, adopted and corrected by Haskell [4] in 1953, is based 
on the Transfer Matrix Method (TMM) formulation. Nayfeh [5] in 1991 and Knopoff [6] in 1964 developed the Global Matrix Method 
(GMM) formulation. The presence of singular matrices for which the inverse is undefined causes the numerical instability of the 
TMM formulation. Rokhlin and Wang [7] in 2001 rearranged the transfer matrix formulation and introduced the Stiffness Matrix 
Method (SMM). A pertinent reference that examines various aspects of the multilayer problem in flat geometry in [8-10]. These 
approaches, based on numerical solution, present shortcomings such as, apparent crossing between adjacent branches especially 
at high frequency limits, missing modes, instability due to the well-known problem of large frequency thickness parameter as 
mentioned in [5, 7] and the high computational cost in the case of complex and multi-layered structures. As a numerical method, 
Finite Element Method (FEM) has been proposed to extract dispersion curves in a variety of structures [11-13]. For example, Manconi 
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[14] used FEM to determine the dispersion curves of a laminated sandwich. The Semi-Analytical Finite-Element Method (SAFE) [15-
17] has been proposed as an alternative method that requires only a two-dimensional discretization of the cross section, as opposed 
to the three-dimensional discretization of the entire waveguide required by FEM. Another numerical method used to obtain the 
dispersion curves is called the Legendre Orthogonal Polynomial Method [18]. This approach expresses the shape of the solution by 
using an orthonormal basis for the expansion of the displacement field values. 

A new and promising approach to mode dispersion modeling is introduced, the Spectral Collocation Method (SCM). The SCM is 
an efficient tool for solving partial differential equations. The SCM reduces the problem to a compact matrix eigenvalue problem 
by accurately approximating the derivative operators of the equation of motion with differentiation matrices. Several papers have 
been published illustrating the use of the spectral method to determine the UGW dispersion curves. For example, Adamou [19] was 
among the first to evaluate the robustness of the method by dealing with anisotropic, inhomogeneous, and multilayer media. 
Karpfinger [20, 21] described an algorithm for calculating propagating modes in cylindrical structures. Quintanilla [22] studied the 
symmetry and coupling properties of solutions in general anisotropic multilayer waveguides. A recent work using the SCM to study 
sandwiched waveguides is in [23]. The SCM approach studied here guarantees that none of the modes are missed, and eigenvectors 
representing accurate approximations of the mode shapes are automatically generated with the eigenvalues.  

When studying multilayer plates, the use of the SCM becomes more efficient due to the persistent problems in matrix analytical 
methods.  However, applying the method in this context is still a challenging task. The addition of boundary conditions and 
interfaces to the matrix system of the eigenvalue problem �� = ��� can cause ill-conditioning, even when an inverse matrix exists. 
Some matrices are practically singular during the calculation of the problem's eigenvalues with spectral formulation, making the 
calculation vulnerable to numerical errors.  Furthermore, as the size of the matrices increases with a higher number of layers, the 
matrix system becomes very large and sparse. Consequently, the solutions found are inaccurate, with spurious eigenvalues. 
Numerical instabilities have been observed in the SCM algorithms proposed by [20, 22]. In this study, we addressed the issue of 
numerical instabilities by balancing the L and M matrices before calculating the SCM eigenvalues. As a result, the process of 
obtaining dispersion curves for multilayer composites is now reliable, precise, and covers a wide variety of structures. These findings 
are presented in this work. 

The balancing technique is based on bilateral diagonal transformations and permutations on the L and M matrix system. The 
matrices consequently become well-conditioned and non-regular. The remainder of the paper provides a clear explanation of the 
proposed algorithm based on Ward’s program [24]. Consequently, the new balanced SCM becomes stable for n layers and improves 
the accuracy and robustness of the dispersion curve calculation. 

The paper is structured as follows: Section II describes the numerical SCM used to resolve characteristic equations of waveguides 
in multi-layered composites. We then focus on the balancing algorithm of the general eigenvalue problem, which we combine with 
the plotting program of SCM for the first time. In Section III, we provide a brief overview of the DC software [25] used to validate the 
plotted dispersion curves. In Section IV, we first assess the efficiency of the balancing algorithm by calculating matrix conditioning 
functions and relative errors. We then evaluate the impact of the number of collocation points (N), wave propagation direction, and 
thickness on curve precision and running time. To validate our findings, we compute dispersion curves for various cases of multi-
layered composites. At a specific couple frequency-wave number (f,k), we calculate the displacements and stress profiles of the first 
fundamental modes. In addition, we investigate the case of a large number of layers, up to 200, which challenges several methods 
and software programs in this field. Finally, we discuss the results by comparing them with DC's curves. 

2. Spectral Collocation Method and Balancing Algorithm  

2.1. SCM formulation for multi-layered composites 

We start by explaining the method used in our study. The spectral collocation point method is an efficient and accurate tool for 
solving partial differential equations. It utilizes differentiation matrices that provide a spectral precision approximation of the 
derivative operators. These differentiation matrices can be computed using interpolants, such as Chebyshev, Fourier, Hermitian, or 
others, that can be precisely differentiated. Subsequently, this section demonstrates how to calculate the dispersion of waves 
propagating in multilayer structures presented in Fig. 1(a), made of Carbon Fiber Reinforced Polymer (CFRP), using Chebyshev 
collocation points and differentiation matrices. 

 
Fig. 1. Schematic of a multi-layered composite made of CFRP: (a) 3D representation, with

i
x′ the coordinate system for wave propagation and the 

global coordinate system ,ix i=1, 2, 3. The layers have a constant thickness of h, (b) 2D representation of n-layers system and the total thickness of H 
and length of Lc. 

(a) 

(b) 
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We consider the ith layer in Fig. 1(b) as a homogeneous anisotropic plate of thickness h with the axis x1 as the direction of wave 
propagation. 

The equation of motion for a homogeneous anisotropic medium with linear elastic behavior is given by: 

2

2
,ij i
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u

x t

σ
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∂ ∂
=

∂ ∂
 (1) 

The relationship between the stress tensor field and the strain tensor field is written as: 

,klij ijklCσ ε=  (2) 

where ijklC  is the stiffness tensor of the plate and the strain tensor field, ,ijε  is written as function of the displacement vector field, 
,ju  as: 
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And the components of displacement field can be written as: 

( ) ( )1

3 ; 1,2,3i kx t

j ju U x e jω−= =  (4) 

with ω  is the angular frequency. The Chebyshev interpolation method, as described by Weideman and Reddy [26], was used for 
spectral resolution. The collocation points' coordinates are defined non-uniformly in the interval [-1, 1] as: 

( )
3

( 1)
cos ; 1,...,

1
i i

x i N
N

π − = =  −
 (5) 

Figure 2 illustrates the discretization in a layer thickness of the nth layer belonging to a multilayer used subsequently, and the 
components of the displacement field are also discretized into N points along the local axis x3:  

( ) { } { } { }( )1 2 3 11 12 1 21 22 2 31 32 3, , , ,..., , , ,..., , , ,..., ,
TT T

N N NU U U U U U U U U U U U=  (6) 

And the differential operators defined in x3 are approximated by Chebyshev differentiation matrices (DM) generated in the 
domain [-h/2, h/2]. The order of derivation is noted n: 
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A detailed description of the SCM can be found in [27–29]. Consequentially, we end up with a system of three equations of 
motion and six equations for the boundary conditions. 

The propagation Eq. (1) can be written in the following matrix form, where the unknowns are the vectors Uj: 
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Or, more concisely, 

( ) 2 ,L k U MUω=  (9) 

The expressions of the elements of matrix L are: 
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Fig. 2. The nth infinite single layer with N collocation points discretization for each displacement component ( )n
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With I the identity matrix and CKL the elastic stiffness constants. The N×N (DM) matrices D(1) and D(2) are generated using the 
Matlab function chebdif [30]. 

Then, we proceed to a discretization of Eqs. (2) and (3) and a rearrangement of their terms, so the expressions of the stress 
matrix can be represented in matrix notation:   

( ) [ ]{ }
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7 8 9 3 1
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The expressions of the S matrix elements are: 
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The eigenvalue problem in Eq. (9) is resolved by implementing the boundary conditions on the free surfaces of the plate. In the 
remainder of this paper, we explain the method for solving this type of problem in a multilayer structure system. 

The formulation for a multi-layered composite in SCM adopts the assembly technique of many systems from the same detailed 
model in Eq. (8). For a multilayer composite consisting of n layers, Fig. 1 shows an example of a stack of layers with fiber orientations 
of 0 and 90 degrees. The equation analogous to Eq. (8) is presented below: 
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⋯ ⋯
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⋯ ⋯

 (13) 

Each of the labeled matrices L(i), M(i) and U(i) (where i = 1...n, indicates the block matrices and the displacement vectors in each 
layer i) has the monolayer form shown in Eq. (8). Or, more concisely: 

[ ]{ }� [ ]{ }�2( ) ,k U Uω=L M  (14) 

Before proceeding with assembly, each individual layer undergoes the following transformation: the material properties of the 
nth layer expressed in the local coordinate ( )n

ix  (i = 1, 2, 3), must be transformed in the coordinate system ix  (i = 1, 2, 3) using a 
tensor rotation. The density of the material is a scalar and remains invariant before and after the rotation. The elastic constant is a 
fourth-order tensor, and the rotation formula is expressed as follows: 

,mnop ok plmi nj ijklC C′ = R R R R  (15) 

Here R  is the transformation matrix as: 

cos( ) sin( ) 0

sin( ) cos( ) 0 ,

0 0 1

j j

mi j j

θ θ

θ θ

 
 
 = − 
 
  

R  (16) 

 

 

Fig. 3. Transformation stiffness tensor components versus � of transversely isotropic plate. 
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and the angle between 1x  and ( )
1
nx  (fiber direction of the nth layer) is ,i∅ ijklC  and mnopC′  are the stiffness tensor before and after 

transformation, respectively. 
To illustrate the transformation required on each layer's stiffness matrix before calculation, consider the example of 

configuration T800M913[0/90/0/90] and a propagation direction with angle 45θ = degrees. In this case, apply rotation angles iθ =  
45, -45, 45, -45 to achieve an effective configuration of [45/-45/45/-45]. Table 5 lists the elastic constants of the transversely isotropic 
plate, and Fig. 3 illustrates their variation with respect to the angle .θ  

As shown in Fig. 1, the faces of the multilayer are located at 3 / 2x H′ =  and 3 / 2x H′ = −  (H is the multilayer total thickness) and 
are free in stress. Therefore, the boundary conditions (BC) are expressed as: 

(1) (1) (1)
33 31 32

( ) ( ) ( )
33 31 32

( / 2) ( / 2) ( / 2) 0, (thetopof thefirst layer)

( / 2) ( / 2) ( / 2) 0, (thebuttonof thenthlayer)n n n

H H H

H H H

σ σ σ

σ σ σ

= = =

− = − = − =
 (17) 

We also impose continuity conditions across interfaces. For an interface, let's say the first interface between layers 1 and 2, the 
continuity conditions of the stress tensor field and the continuity conditions at a perfect interface for displacement fields are: 

3 3

3 3

3 3

(1) (2) (1) (2)
33 33 1 11 1

(1) (2) (1) (2)
31 31 2 21 1
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u u

u u

u u

σ σ

σ σ

σ σ

= =

= =

= =

− = − =

− = − =

− = − =

 (18) 

where x3 = 1st means evaluation at the first interface.  
This gives a total of six equations for each interface. So, for a system of n layers, we have n-1 interfaces and 6n-6 interface 

equations, plus six boundary conditions, for a total of 6n equations, which must replace the appropriate lines in the matrix system 
Eq. (13). The following Fig. 4 illustrates how to implement the boundary conditions BC at the upper and bottom layers, the stress 
continuity interface conditions IC (SC.i-j), and the displacement continuity interface conditions IC (DC.i-j) between two adjacent 
layers i and j. The modified line numbers are indicated in the same figure and respect the non-overlapping condition. The method 
was programmed in Matlab, and the resulting matrices require a balancing phase, which will be detailed later in the paper. 

 
Fig. 4. Construction of the global matrix ℒ following the collocation scheme for a n-layers matrix system. The external boundary conditions (BC) as 
well as the interface conditions (IC) are introduced in lines indicated by the left column. The empty boxes represent zeros in the global matrix ℒ. 
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with: 
I(i) corresponds to the ith row of the I identity matrix of dimension NxN. 
S(j)(i) corresponds to the ith line of the S matrix of the jth layer. 
Similarly, the same lines where the boundary and interface conditions are introduced into the matrix ,L  are replaced in the 

matrix M  by lines filled with zeros. 

2.2. Balancing the general eigenvalue problem 

After introducing interface conditions in a multilayer case, non-symmetric and sparse matrices arise, leading to several 
incorrect and infinite eigenvalues and unstable results. To achieve the expected precision of QZ-type algorithms for solving this 
type of generalized eigenvalue problem, we balanced matrices L  and M  using a balancing algorithm before solving the matrix 
system in Eq. (14). The method of balancing is based on diagonal bidirectional permutations and transformations that reduce the 
norm of a matrix or the condition numbers of a subset of L-eigenvalues. According to Ward [24], the algorithm for the three-step 
balancing program is shown in the above graphic. The accuracy of the calculated frequencies has significantly improved, enabling 
precise plots of the dispersion curves as shown in the results section.  

We begin by addressing an initial eigenvalue problem that needs to be balanced in three steps: 
1. 11 33 11, , ,L L M and 33M  are upper triangular matrices allowing to find certain eigenvalues, the others are the eigenvalues ω  

of the reduced problem 2
22 22 .A x B xω=  Otherwise, 22 ,=L L  and 22 =M M  and the other submatrices do not exist. If L  and 

M  can transform into higher triangular form, then 22L  and 22M  do not exist and all eigenvalues ω  have been found. 
2. H1 and H2 are diagonal matrices. A generalized conjugate gradient technique is used for scaling. 
3. In order for the ratio of the column norms of 2JL  to the corresponding column norms of 2JM  to appear in non-increasing 

order, the grading method first determines the permutation matrix 2.J  Then 1J  is established in a way that the line norm 
ratio of 1 2J JL  to 1 2J JM  appears in a non-increasing order. 

In the final step, the original problem of 2U Uω=L M  is transformed into the problem of 2 .V Vω′ ′=L M  If only the eigenvalues 
are desired, the issue can be simplified by just taking into account the matrices 1 1 22 2 2J H H JL  and 1 1 22 2 2.J H H JM  The matrices are 
calculated in the established Matlab program: 

1 1 1 1 2 2 2 2and ,T J H Q T Q H J= =  (19) 

 
 

 

Fig. 5. The flow chart algorithm of Balancing the eigenvalue problem resulting from the multilayered composite SCM formulation. 
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And, the equations balance the matrices L  and :M  

1 2 1 2and ,T T T TL M  (20) 

We use an inverse transformation to base our calculations on the eigenvectors V to determine the eigenvectors U: 

1

2 2

3

,

V

U T V

V

     =  
     

 (21) 

After the balancing phase, a stable eigenvalue problem is obtained in terms of frequency :ω  

2 ,V Vω′ ′=L M  (22) 

2.3. Proposed computational algorithm for multi-layered composites 

Equation (22) allows for the calculation of propagating modes (Lamb and SH) in a material with multiple layers. The proposed 
algorithm, which combines the SCM and balancing technique, is implemented using Matlab software and summarized in Fig. 6. 

 

Fig. 6. The flow chart algorithm of plotting dispersion curves by SCM for layered composite. 
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Table 1. Proprieties of the unidirectional CFRP layer. 

11
C  22

C  33
C  12

C  13
C  23

C  44
C  55

C  66
C  e  ρ  

143.8 13.3 13.3 6.2 6.2 6.2 3.6 5.7 5.7 1 1.56 

Table 2. Matrix L norm variation with balancing. 

 Before balancing After balancing 

N Norm Cond Norm Cond 

10 1.7211e+20 1.3755e+21 810.7410 1.3536e+5 

20 3.2416e+21 5.1252e+21 2.9413e+3 1.1307e+6 

Table 3. Relative errors of the eigenvalues generated by the spectral method for the mth first modes (m = 10), � without using the balanced matrices 
and � with using the balanced matrices, compared to the DC’s values ��, in the CFRP-Al multilayer with wavenumber k = 1 rad/mm. The spectral 

method used N = 20. 

m � (kHz) � (kHz) �� (kHz) RE (without balancing) RE (with balancing) 

1 0.00 328.88 329 100 0.03 

2 322.53 406.21 406 20.56 0.05 

3 384.50 478.21 478 19.56 0.04 

4 384.50 487.45 486 20.88 0.29 

5 412.59 592.00 590 30.07 0.33 

6 526.41 811.47 811 35.09 0.06 

7 580.52 844.82 840 30.89 0.06 

8 0.00 930.56 930 100 0.06 

9 0.00 1031.10 1031 100 0.01 

10 800.93 1143.08 1137 29.56 0.53 

The initial two steps require setting the model's general and spectral parameters. Following that, the L  and M  matrices are 
constructed for each layer in a loop with a step dependent on the wave number k. Finally, the global matrices are assembled and 
adjusted by introducing boundary and interface conditions. This balancing algorithm establishes the general eigenvalue problem, 
and the matrix system is transformed into a non-regular and well-conditioned state, allowing for resolution.  The standard MATLAB 
eigenvalue function is used to calculate the eigenvalues ω  and eigenvectors U for each value of k. Finally, dispersion curves and 
displacement profiles are plotted for a selected wave number interval.  

For all types of composites, the balancing stage ensures the stability and reliability of the SCM formulation. 

3. Dispersion Calculator Software 

The Dispersion Calculator (DC) [25] is a validated stand-alone program that computes guided wave dispersion and mode shapes 
in plates and multi-layered anisotropic laminates. The outstanding book of Nayfeh [31] including the TMM served as the framework 
for the programming of the DC. It uses the Rayleigh-Lamb equations and the SMM. Another well-known software in this field is 
DISPERSE, which is based on the GMM and was developed by Lowe [8] and Pavlakovic [32]. It has a computational limitation of 
approximately 60 maximum layers. Therefore, DC, which has over 400 layers, is an excellent option for comparing our plots and 
evaluating the accuracy and robustness of our SCM formulation with the new balancing algorithm. 

As already mentioned, the DC software is based on the matrix analytical approach of the SMM, which relates the stress 
components at the bottom and top of the layer to the displacement at the bottom and top of the layer. An advanced recursive 
algorithm is used to obtain the stiffness matrix for the whole composite. For further details, refer to [5, 28].  

4. Results and Discussion 

The algorithm presented in Fig. 6 is utilized to calculate the desired solutions for all types of composite structures. The study 
investigates four distinct cases: 

- Hybrid multi-layered composite [CFRP-Al]x 
- Asymmetric transversely isotropic multi-layered composite T800M913 [0/90]x 
- Symmetric transversely isotropic multi-layered composite T800M913 [0/90]10s 
- Multi-layered composite with high number of layers T800M913 [0/90]100 

To validate the algorithm, the first material is used before plotting dispersion curves. Then, a parametric study is conducted 
using the remaining materials to compare the effectiveness and stability of our proposed algorithm with DC software. For the multi-
layered composites, the transversely isotropic material was rotated using Eq. (16) based on the specific layup for each case. The 
layups used here have a repeating sequence indicated by the subscript number x.  

4.1. Hybrid multi-layer composites [CFRP-Al]x 

4.1.1. Hybrid multi-layer composites [CFRP-Al- CFRP-Al] 

For model validation, a complex hybrid multi-layered composite of four layers is used. The elastic stiffness tensor ijC  (GPa), the 
density ρ  (103 kg/m3) and the thickness e (mm) for the CFRP layer are cited from [12] and listed in Table 1. 

For the Aluminum layer we have: 72.4E GPa=  ; 1e mm=  ; 32770 /kg mρ = ; 0.33.ν =  

a) The balancing algorithm's effectiveness and validation 

To evaluate the effectiveness of our algorithm, we will use two indicators: the matrix norm and the conditioning measure. These 
were generated before and after the application of balancing. The Norm function represents the first indicator, while the Cond 
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function represents the second.  
Tables 2 and 3 present the balancing effect on the matrix system of the eigenvalue problem. For a wavenumber of k = 1 rad/mm 

and two different values of collocation points N, Table 2 shows a decrease in balance signs, indicating good balancing. The same 
reduction norm is observed in the M matrix. 

The effectiveness of the balancing approach in straightening and correcting eigenvalues by reducing relative error (RE) was 
examined. Table 3 demonstrates that inaccurate frequency values of � hinder the creation of precise curves. Balancing reduce RE, 
allowing values of  � to closely approximate the DC values of ��. 

b) Dispersion curves of [CFRP-Al- CFRP-Al]  

The dispersion curves in Fig. 7 illustrate the balancing improvement through good agreement with the DC results. In Fig. 7(a), 
the cutoff frequency zone highlights the missing solutions in DC plot caused by the curves' conversion from phase velocity (Vp) 
space to wavenumber (k) space. 

In this section, we can conclude that the balancing algorithm is an efficient preconditioner for our eigenvalue problem. The 
following results evaluate our algorithm. 

4.1.2. Dispersion curves of Hybrid multi-layer composites [CFRP-Al]50 

The second example for verification involves a hybrid system with a high number of layers. The layup [CFRP-Al]50 combines 
orthotropic material with the properties listed in Table 4 and isotropic material. The results in Fig. 8 demonstrate good agreement 
between the SCM and DC. 

 
 

 

Fig. 7. Coupled modes dispersion curve (Lamb and SH) in [CFRP-Al-CFRP-Al] in the (k,f) plane (a) and the (Vp,f) plane (b). Plotted by: SCM (stars) with 
N=20, DC software (solid lines). 

 
Fig. 8. Coupled modes dispersion curve in the hybrid layered composite [CFRP-Al]50, plotted by: SCM (stars) with N = 4, DC software (solid lines in 

blue). 
 

Table 4. Proprieties of the orthotropic CFRP layer. 

11
C  22

C  33
C  12

C  
13

C  23
C  44

C  
55

C  66
C  e  ρ  

70 33 14.7 23.9 6.2 6.8 4.2 4.7 21.9 1 1.5 

 

(a) (b) 
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Table 5. Proprieties of the transversely isotropic plate T800M913.  

11
C  22

C  33
C  12

C  13
C  23

C  44
C  55

C  66
C  e  ρ  

154 9.5     9.5     3.7    3.7    5.2   2.15   4.2   4.2   1 1.55 

4.2. Transversely isotropic Multi-layered composites T800M913 [0/90]x 

4.2.1. Multi-layered composite T800M913 [0/90/0/90] 

a) Number of collocation points and thickness effect on convergence rate 

The material chosen for this study is T800M913, a unidirectional layer of the fiber-matrix system commonly used in the field of 
solid mechanics and NDT. This material has been previously studied by experts [33, 34] and is included in the material library of DC 
software. It belongs to the class of materials with hexagonal symmetry and its material properties are determined by five elastic 
constants. For this case, the T800M913 was rotated to correspond with the layup [0/90/0/90]. The technical properties corresponding 
to this layup are listed in Table 5. 

The decimal logarithm of the relative error RE in terms of the frequency ω  is computed for the 4 mm thick layered composite 
[0/90/0/90], the DC solutions are taken as reference, see Fig. 9, and has the relation: Re | | / 100.DC DCω ω ω= − ×  The results demonstrate 
a significant reduction in error as N increases in both fundamental mode B0 and high order mode B9. 

After evaluating the effect of spectral discretization on plot precision, we investigated the relationship between the running 
time for plotting dispersion curves and the thickness in the asymmetric multilayer composite T80M913[0/90]x. The total thickness 
is increased by adding layers (i.e., increasing x) with a thickness of 0.25 mm. The study is conducted for three values of collocation 
points N, as shown in Fig. 10, within a thickness range of 10 mm. The computer used for this study has an Intel Ci7-6820HQ processor 
running at 2.7 GHz and 8 GB of RAM. In SCM, the number of discretization points N per layer remains constant for all layers. We 
chose a wavenumber step of 100 m-1 and a final value of 6000 m-1. 

It was anticipated that an increase in the total thickness H would result in a greater number of collocation points, leading to 
longer computation times. This sluggishness is due to the increase in matrix size and the quantity of boundary conditions that 
need to be verified. 

b) Dispersion curves of T800M913 [0/90/0/90] 

Figure 11 shows a wavenumber plot that is accurate and consistent with the DC plot. The dispersion curves appear to cross each 
other, but upon closer examination (as seen in the inset image), it is clear that two modes are passing very close to each other 
without actually crossing. Figure 12 displays the phase velocity plot, which also demonstrates good accuracy. 

 
 

 

Fig. 9. Decimal logarithm of the RE in computed frequency at k = 1 rad/mm as a function of the number of collocation points per layer for the B0 and 
B9 modes. 

 

 

Fig. 10. Running time evolution with thickness for the layered composite of T800M913[0/90]x. Three values of collocation points N are considered. 

H 
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Fig. 11. Lamb modes dispersion curve in the T800M913 [0/90/0/90], plotted by: SCM (stars) with N = 10, DC software (solid lines). The inset is a 
magnification of the small discontinued rectangular. 

 

Fig. 12. Coupled modes dispersion curve in the T800M913[0/90]25, plotted by: SCM (stars) with N = 4, DC software (solid lines). 

 

Fig. 13. Coupled modes dispersion curve in 4 mm thick of T800M913 [0/90/0/90], plotted by: SCM (stars) with N = 10, DC software (solid lines). 
(a)  � � 0 degree, (b)  � � 45 degrees. 

c) Guided wave directional dependency  
 

It is widely recognized in the NDT that the dispersion characteristics of different modes are closely related to the wave 
propagation direction �. Figure 13 analyzes the phase velocity results for waves propagating in two separate directions at 0 degree 
and 90 degrees with respect to the global direction x1. The results of the SCM and SMM were identical. 

Figure 13(b) shows that due to the asymmetric layup, mode separation cannot be achieved. Therefore, we use the letter 'B' to 
denote the coupled modes of Lamb and SH. The rectangular zones indicate that DC misses modes B3 and B8, and a finer frequency 
step is required to identify parts of them. However, such manual interventions are unnecessary for SCM. Figure 13(a) shows the 
intersection of several higher order modes (branches with cut-off frequencies) at approximately 340 kHz and 520 kHz, as indicated 
by the circles. However, these branches separate in this area as the angle of propagation increases to 0 degree. 

(a) (b) 
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Fig. 14. Coupled modes dispersion curve in 4 mm thick of T800M913 [0/90/0/90], plotted by: SCM (stars) with N = 10, DC (solid lines). Along  � � 0 deg.  

 
Fig. 15. Phase velocity as a function of frequency and propagation angle in the T800M913[0/90/0/90]. (a) B0 mode, (b) B1 mode, (c) B2 mode, plotted by: 

SCM with N = 10. For a color version, see the plates section. 

The B0
SH mode exhibits non-dispersive behavior with a constant phase velocity of �� � ���� �⁄ � 1.65 m/ms when propagating 

along the 0 degree direction. However, when the propagation direction is changed, the same mode transforms into a coupled B1 
mode with some degree of dispersion, as seen in Fig. 13(b). At 90 degrees it resumes its horizontal transverse speed, as shown in 
Fig. 14(b). Furthermore, according to Fig. 14(c), mode B2 experiences a speed reduction at a 45-degree angle, possibly due to the 
weakening of stiffness constants in this direction of propagation compared to the direction of the fibers, as shown in Fig. 3. 

The group velocity can be computed using the relationship, �� � ��

��
, and the dispersion curve is presented in Fig. 14 showing 

good concordance with SMM.  

d) Displacement and stress profiles of T800M913 [0/90/0/90] 

Two points were selected from the dispersion curve of the T800M913[0/90/0/90] composite, corresponding to the coupled 
fundamental modes B0 and B1 at a frequency of 500 kHz. These positions are designated by the circles in Fig. 16. The eigenvectors in 
Eq. (22) represent the displacement profiles created by the SCM at these positions. The eigenvector balancing phase, as shown in 
Eq. (21), was crucial to obtaining the desired results. Figures 17 and 18 show a close result with DC, where the stress field and 
displacement profiles are continuous across the thickness. Although the form of the displacement profiles has been successfully 
recovered, the balancing procedure has caused a decline in the accuracy of the eigenvectors. This issue is discussed in [35]. 

To plot displacement profiles of the spectral method, normalization by the acoustic power is applied, as described in [28, 34]. 
This processing step provides a precise and objective interpretation of the results. 

(a) 

(c) 

(b) 
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Fig. 16. Coupled modes in 4 mm of T800M913 [0/90/0/90], plotted by SCM, N = 30. Indication with circles of two mode shapes points at 500 kHz frequency. 

 
Fig. 17. Wave structures of the B0 (a) and B1 (b) modes localized at the frequency f = 500 kHz and N = 30. 

 
Fig. 18. Stress profiles of the B0 (a) and B1 (b) modes localized at the frequency f = 500 kHz and N = 30. 

Figure 17 shows that component u2 of B0 and B1 modes vanish, transforming them into pure Lamb waves. Furthermore, these 
modes are dominated by normal displacement u3. Consequently, at the concerned frequency range, the phase velocity of these 
modes approaches that of the pure longitudinal bulk wave (B0

SH), as shown in Fig. 13(a). Additionally, Fig. 18 displays the stress field 
produced by B0 and B1 modes at the same frequency. The free composite boundary conditions are verified for the out-of-plane 
component ��� and the shear components ��� and ���. When compared to the DC result, the SCM produces a satisfactory result. 

4.2.2. Dispersion curves of transversely isotropic multi-layered composite T800M913 [0/90]10s 

The efficiency of the SCM with balancing strategy is evaluated in this study by applying it to a symmetric multi-layered 
composite. To ensure accurate results, boundary conditions (BC) were carefully inserted into the global matrix ℒ and the matrices 
in Eq. (13) were assembled with the BCs reversed from the composite's line of symmetry.  The composite's symmetry enables mode 
separation. The shear horizontal modes (SH) are separated from the Lamb modes by evaluating the second component of the 
calculated eigenvectors along x2. The symmetrical and asymmetrical modes are distinguished by evaluating the signs of the other 
eigenvector components. This mode separation for the T80M913 [0/90]10s composite is illustrated in Fig. 19 and Fig. 20. 

(a) (b) 

(a) (b) 
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Fig. 19. Decoupled modes dispersion curve by SCM in the symmetric layered composite T80M913[0/90]10s. (a) Lamb modes, (b) SH modes. Symmetric 

modes (in red) and asymmetric modes (in blue). 

 
Fig. 20. Decoupled modes dispersion curve in the layered composite T80M913[0/90]10s, plotted by: SCM (stars) with N = 4, DC software (solid lines in 

blue). Symmetric modes (in red) and asymmetric modes (in blue). 

 
Fig. 21. Coupled modes dispersion curve in the layered composite T800M913[0/90]100, plotted by: SCM (stars) with N = 4, DC software (solid lines). 

4.2.3. Dispersion curves of transversely isotropic multi-layered composite T800M913 [0/90]100 

As in a previous study on DC software [34, 36], we are conducting a challenging layup with 200 layers and a thickness of 25 mm. 
This composite material is commonly used in the aircraft industry. Additionally, the coupling of Lamb and SH modes presents a 
challenge for the plotting algorithms due to mode crossings. The purpose of the SCM is to calculate the dispersion curve of phase 
velocity in terms of wave number k. The steps are set at 15 m/s up to a maximum of 1800 m/s with N = 4 per layer. The plot 
demonstrates excellent agreement with DC's results, as shown in Fig. 21, except for the 250-350 kHz frequency range, where the DC 
fails to plot a branch of modes. This requires additional computing time due to the need for a finer step in DC. It has been concluded 
that the SCM can handle a greater number of layers and various configurations. 

(b) (a) 
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5. Conclusion 

The study conducted here aimed to optimize the spectral collocation method for composite waveguides in ultrasonic non-
destructive testing. The paper demonstrates that using a balancing algorithm to solve the eigenvalue problem of the SCM is an 
effective tool for calculating dispersion curves and displacement/stress profiles. Previous works on the SCM, such as [20, 29], have 
not addressed the numerical instabilities that we have highlighted. These instabilities are caused by the method used to construct 
the matrix system that defines the eigenvalue problem. The proposed algorithm for balancing has significantly reduced both the 
conditioning measure and the matrix norm in the matrix system, optimizing the spectral formulation and enabling accurate 
solutions to be calculated. This ensures reliability and ease of implementation of the SCM in complex composite structures. 

The accuracy of the balanced-SCM was demonstrated at both low and high frequencies by selecting the fundamental mode B0 
and the higher order mode B9 to assess the plotting error. An error of less than 0.03% was achieved with only 20 collocation points 
per layer. Subsequently, various multilayer configurations were examined, and the plotting results were consistent with those of 
DC. However, when dealing with a large number of layers, we observed a decrease in the computational cost of the SCM. This is 
explained by the discretization of the domain, which increases matrix sizes, as well as the multiplication of boundary conditions 
and interfaces that need to be verified. Nevertheless, the method's robustness is always preserved, as it can calculate all propagating 
modes with a separation into Lamb and SH, symmetric and anti-symmetric modes. In addition, SCM has been shown to overcome 
the limitations of traditional zero-finding methods by computing dispersion curves for laminates with 200 layers with high 
precision and good convergence. Furthermore, the balanced SCM successfully extracted displacement profiles and stress fields, 
allowing for effective use of ultrasonic non-destructive testing on multi-layered composites which are of great interest in the 
aeronautical and space industries. The study's findings support previous research and validate SCM's competitiveness when 
compared to other methods such as SMM, GMM, and SAFE. 

There is room for further work. Only planar structures were examined in this study due to their prominence and relevance in 
the industry. However, it is important to note that cylindrical structures should also be taken into account since the principle of 
assembling the matrices remains the same. Furthermore, a comparison can be made with other balancing algorithms, such as those 
discussed in [39], in terms of processing time and accuracy of the calculated eigenvalues. The method presented here can be used 
to analyze dispersion curves and wave structures in a multilayered composite with an imperfect interface, such as delamination. 
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Nomenclature 

h  

cL  

H  

∅  

θ  

ω  

f  

k  

Thickness of a single layer [m] 

Length of n-layers system [m] 

Total thickness of n-layers system [m] 

Fiber direction of a single layer [Degree] 

Direction of wave propagation [Degree] 

Angular frequency [rad/s] 

Frequency [Hz] 

Wavenumber [1/m] 

pV  

gV  

iU  

ijσ  

ρ  

E  

ν  

ijC  

Phase velocity [m/s] 

Group velocity [m/s] 

Displacement components (i = 1, 2, 3) [m] 

Stress components (i,j = 1, 2, 3) [Pa] 

Density [kg/m3] 

Young’s modulus [Pa] 

Poisson ratio 

Stiffness components [Pa] 
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