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Abstract. Maxwell model is one of the most outstanding and widely used models for the description of viscoelastic materials. In 
this study, we use an efficient meshfree technique based on the Moving Kriging (MK) interpolation for the numerical solution of 
Magnetohydrodynamic (MHD) flow of fractional Maxwell fluid. In this scheme to discretize this equation in time and space 
variables, we use the finite difference method and MK interpolation shape functions, respectively. Also, we calculate the local weak 
form for every node instead of the computation of the global weak form for the global domain. So, we reduce such problems to a 
system of algebraic equations. To indicate the efficiency of the present scheme, four examples are discussed in various types of 
domains and with uniform and nonuniform nodal distribution in 2D cases. Also, to show the validity of the method in this example, 
a comparison with a valid method has been made. Moreover, in the last example, the accuracy of our scheme in the 3D case is 
illustrated for the fractional telegraph equation. 

Keywords: MHD fractional Maxwell fluid, Meshless method, Caputo's Fractional derivative, Moving Kriging interpolation. 

1. Introduction 

In recent times, fractional differential equations (FDEs) and their applications have been fundamental and popular. The origin 
of this branch of differential equations was first proposed in a letter from Leibniz to L'Hospital in 1695 [1]. FDEs and fractional 
calculus have many applications in various branches of engineering and sciences such as chemistry, physics, fluid mechanics, 
viscoelasticity, finance, signal processing, biology, and so on [2-5]. Difficulty to find an analytical solution of FDEs motivated 
researchers to solve these equations numerically. Many numerical schemes have been applied and developed for the numerical 
solution of PDEs, such as finite element methods [6-10], homotopy analysis schemes [11-12] variational iteration methods [13-15], 
and collocation schemes see [16-21]. Some of the mentioned references are based on mesh-dependent schemes. Also, Grid 
generation of complex geometries is itself a difficult task. 

Therefore, the meshfree technique has become a broad issue in the research community. Dehghan et al. [22] applied a meshfree 
technique based on the radial basis function (RBF) and the Kansa method for the numerical solution of the time-fractional nonlinear 
Kline-Gordon and Sine-Gordon equations. Salehi [23] proposed a meshfree collocation technique to solve multi-term time-fractional 
diffusion wave equation.  Shivanian applied an applicable meshless scheme named as spectral meshfree radial point interpolation 
(SMRPI) technique [24] for solving the two-dimensional diffusion equation with an integral condition. 

Shokri and Habibirad [25] applied the MLPG method for the nonlinear Kline-Gorden equation. The main benefit of the MLPG 
method is to transform a global approximation into a system of algebraic equations for the numerical solution of a problem. Also, 
it uses a local weak form in each sub-domain instead of a global weak form. There are six different types of MLPG techniques 
created by changing the test function which are named as MLPG1, MLPG2, ... and MLPG6. Habibirad et al. [26] presented an efficient 
combination of the MLPG5 and time-splitting methods for the numerical solution of the nonlinear Schrodinger equation in two and 
three dimensions. Among these six methods, the MLPG2 is a collocation-type method. 

Habibirad et al. [27] proposed the MLPG2 method for solving the two-dimensional variable-order time-fractional 
mobile/immobile advection-diffusion model with Dirichlet boundary conditions. In all versions of MLPG, the authors used moving 
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least square (MLS). The MLS shape functions don't have the Kronecker delta attribute. So, imposing the essential boundary condition 
is difficult. Here, to eliminate this deficiency, we use Moving Kriging (MK) interpolation to form the MLPG shape functions. Many 
researchers used MK instead of MLS in the MLPG method. For example, we refer the readers to [25-27] and references therein. In 
this paper, we apply the MLPG approach for the numerical solution of the unsteady 2D flow of magnetohydrodynamic (MHD) 
fractional Maxwell fluid. 

Viscoelastic fluids show both the elastic behavior of solids and viscose characteristics of liquids simultaneously. Some materials 
such as soap solutions, paints, polymer melts, etc., show viscoelastic behavior. These fluids are used in several industrial and life 
science applications, including oil exploitation [28, 29], wire coating [30], blood flow in human arteries [31], and many others. 
Therefore, the study of viscoelastic fluids and their mathematical modeling has significant importance in the optimum design of 
industrial processes and facilities. 

There are several models for the mathematical modeling of such fluids, including Maxwell, Voigt, Jeffreys, Oldroyd, KBZ, etc. [32] 
Maxwell model is one of the most outstanding and widely used models for describing viscoelastic materials [33, 34], among others. 
However, one of the weaknesses of this model arises when it is used for modeling simple shear flows of natural fluids [39]. In this 
situation, the model cannot predict the relationship between shear stress and shear rate accurately. Therefore, some modifications 
should be considered to improve its performance in describing simple shear flows. 

The memory of fluids is one of the most important and most ignored characteristics of them since this property represents the 
history of the fluid and affects its future behavior [36]. On the other hand, time-fractional models can save the memory of systems. 
Therefore, several investigators used fractional-order derivatives to mathematical modeling of viscoelastic fluids [37, 38]. In this 
way, the integer orders of conventional viscoelastic models are replaced by real orders to obtain a fractional viscoelastic model. The 
fractional version of the Maxwell model has an excellent description of experimental data [35]. Therefore, one may overcome the 
drawback mentioned above in the modeling of simple shear flows. 

MHD flow arises in several applications, including the flow of saltwater, electrolytes, MHD casting of liquid metals (see Fig. 1), 
etc. In such flows, a magnetic field can affect the hydrodynamic and heat transfer of a flowing conductive fluid. Several scientists 
investigated the flow of MHD fractional viscoelastic fluids in different situations [38-44]. 

In this study, we consider a fully developed flow in a pipe with four- different cross-sectional area, as shown in Fig. 2. Therefore, 
we neglect the velocity variation in the axial direction, and then one has a 2D velocity profile that just varies in x and y directions. 
Hence, the governing equation for the 2D fully developed flow of MHD fractional Maxwell fluid and the associated initial and 
boundary conditions are as follows: 

1 2 3 4

0

( , ) ( , ) ( , ) ( , ) ( , ) ( , ), ( , ) [0, ],

( ,0) ( ), ( ,0) ( ), ,

( , ) ( , ), ,

t t t

t

v t v t v t v t v t s t t T

v v v g

v t h t

α βλ λ λ λ + + + = ∆ + ∈Ω× = = ∈Ω = ∈∂Ω

pp p p p p p

p p p p p

p p p

D D D

 (1) 

 

  

Fig. 1. MHD casting of liquid metals [52]. 

 

Fig. 2. Schematic of problem geometry and the cross-sectional area of the selected domains. 
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Table 1. Nomenclature section of the paper. 

Parameter Notation Parameter Definition Unit 

T  Final time s 

α  Caputo fractional derivative order Constant number 

β  Caputo fractional derivative order Constant number 

λ  Relaxation time s 

M  Pressure gradient parameter Constant number 

1

1
:

α
λ

λ
=  Dependent quantity 

1

s
 

2 : Mλ =  Pressure gradient parameter Constant number 

3 :
M
α

λ
λ

=  Dependent quantity 
1

s
 

4

1
:

α
λ

λ
=  Dependent quantity 

1

s
 

τ  Time step size s 

 
where, 1 2, 1,α β α< ≤ = − and 2.Ω⊂ ℝ  Also, T  is the final time, and t

ζ
D  is the Caputo fractional derivative operator concerning t  

defined as follows: 

( ) ( 1)

0

( , )1
, 1 ,

( )
( , )

( , )
, ,

t l

l l

t
l

l

v r dr
l l

l r t r
v t

v t
l

t

ζ
ζ

ζ
ζ

ζ

− −

 ∂ − < <Γ − ∂ −= ∂ = ∂

∫
p

p
p

D  (2) 

in which l  is a positive integer. In Eq. (1), ∆  is the Laplacian differential operator  2 2 2 2() / () / .x y∆= ∂ ∂ +∂ ∂  Moreover, 0,  ,  v g s  and 
h  are given functions. Zhang et al. [37] studied the analytical and numerical solutions for the 2D flow of MHD fractional Maxwell 
fluid (1) in a rectangular pipe driven by a variable pressure gradient. A list of nomenclature used throughout this paper is provided 
in Table 1. 

This paper is constructed by the following sections: In Section 2, we give a brief review of the MK interpolation. In Section 3, we 
explain the time discretization and numerical performance of the MLPG technique based on MK interpolation for the MHD 
fractional Maxwell fluid equation. A numerical experiment is performed for the mentioned equation in Section 4. Finally, a brief 
conclusion is given in Section 5. 

2. A Summary of Construction MK Interpolation Shape Functions 

In meshless schemes, several methods are employed to build the shape functions, such as the radial basis function (RBF) 
technique, and moving least square (MLS) scheme [25, 26, 45]. The moving Kriging interpolation approach introduces different kinds 
of shape functions in meshless techniques. These shape functions have the δ− Kronecker attribute. So, the essential boundary 
conditions can be imposed easily. The Kriging and its derivatives are used to interpolate geostatistical data [46, 47]. Suppose the 
global domain 2RΩ⊆  is discretized with some of properly scattered points , 1,2, ,i i n= …x  and ( )v x  is a function defined in Ω . 
Suppose that only N  points surrounding node x  influence ( )v x . The MK technique ( )hv x  is formulated as follows [46, 48]: 

1

( ) ( ) ( ) , ,
N

h
xi i

i

v vφ
=

= =Φ ∈Ω∑x x x v x  (3) 

in which the shape functions iφ  is: 

1 1

( ) ( ) ( ) ,
m N

ki i ji ki
j k

x p x r xφ
= =

= +∑ ∑A B  (4) 

where A  and B  are known matrices and defined by the following equations: 

1 1 1

1

( ) ,

( ).

T TP R P P R

R I P

− − −

−

=

= −

A

B A
 (5) 

Hence, we consider cube polynomial 2 2 2 2 3 3( ) [1 ].Tp x yxyx y xy yx x y=x  Moreover: 

1 1 1

1

( ) ( )

.

( ) ( )

m

N m N

p p

P

p p

    =      

x x

x x

⋯

⋯ ⋯ ⋯

⋯

 (6) 

The vector ( )r x  in Eq. (2) is defined by: 

[ ]1( ) ( , ) ( , ) ,T
Nγ γ=r x x x x x⋯  (7) 
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where ( , )jγ x x  is the correlation function. Many functions may be chosen as a correlation function. In this paper, we choose the 
following correlation function: 

2 3 41 6 8 3 , 1,
( , )

0, 1,
i i i i

i

i

d d d d

d
γ

 − + − ≤=  >
x x  (8) 

where i
i

i

d
r

−
=

x x‖ ‖
 and ir  is the size of support in the weight function. Moreover: 

1 1 1

1

( , ) ( , )

.

( , ) ( , )

N

N N N

r r

R

r r

 
 
 =  
   

x x x x

x x x x

⋯

⋯ ⋯ ⋯

⋯

 (9) 

A MK interpolation shape function ( )iφ x  has the following δ− Kronecker property: 

1, ,
( )

0, 0.i j ij

i j

i
φ δ

 == =  ≠
x  (10) 

To see other essential properties of the MK interpolation shape functions, we refer the readers to [46-48]. 

3. Numerical Implementation 

In this section, we introduce a meshfree technique through the MK scheme for solving Eq. (1). 
At first, we generate a fully discrete system of Eq. (1) in the time variable. So, we suppose /T nτ =  as the time step size and 

, 0,1,2, ,kt k k nτ= = …  are the time discretize points where n  is an arbitrary positive integer. Now, to discretization the fractional 
differential equation (1) in the time variable, we use the following finite difference expressions as [49]: 

( )

( ) ( )

3
1 0 1 1 1 1

1

2
1 0 1 1

1

( , ) 2 2 ( ),

( , ) ,
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+ + − − + − − −

=
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 = − + + − + +  
 
 = − + − +  

∑

∑

p
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D

D

 (11) 

in which 2 2 1 1
0 0, ( 1) ( ) , , ( 1) ( )

(3 ) (2 )k kc d k k a b k k
α β

α α β βτ τ

α β

− −
− − − − = = + − = = + −  Γ − Γ −

 and ( , ).nv v nτ= p  Substituting Eq. (11) and the 

following relation: 

1 ( ),n n
t

v v
v O τ

τ

+ −= +D  (12) 

in Eq. (1), results in: 

( )

( )

1
0 1 1 11 1

1

2 0 1 3 1 4 1 11
1

2 2
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n n

n n n k n k n k n k
k

n
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k
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=
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Simplifying this relation, one obtains the following equation: 

( )

( )

1 1 4 1 2 0 1 1

0 1 1
1

2 0 1
1

( , )

2

,

n n n n n

n

k n k n k n k
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k

v v v c v s t
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(13) 

in which 1 1
1 0 0 2 3 2 0 0 2, .2c a c a

λ λ
µ λ λ µ λ

τ τ
= + + + = + +  So, the time discretization is completed. 

Now, we perform the discretization in space variables by using MK interpolation. For this propose, we assume, 2RΩ⊆  is the 
global problem domain, and { }*

1 2 3, , , , m= …X p p p p  be arbitrary scattered points in the global domain .Ω  Also, instead of calculating 
global weak form, we introduce the weak form over a local subdomain such as ,Ωp  which is a small region environment over each 
node in the general domain .Ω  Moreover, these subdomains can have any desired geometric shapes and sizes [50]. They overlap 
and cover the entire domain .Ω  We assume they are circular in 2D, and for any random point *∈p X  we introduce the local weak 
form of Eq. (1) independent subdomain Ω ⊂Ωp  to .p  For every point ,p  the local weak form of Eq. (13) in Ωp  is as follows: 

( )

( )

1 1 4 1 2 0 1 1

0 1 1
1

2 0 1
1

( ) ( ) ( ) ( ) ( , )

( ) 2 ( ) ( )

( ) ( ) .

n n n n n

n

k n k n k n k
k

n

k n k n k
k
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µ λ µ
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+ + − +

− + − − −
=

− + −
=

− ∆ = − +

− − +

− −

∑

∑

p p p p p

p p p

p p

 
(14) 
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Assuming there are only N  points ( )N m≤  in the neighborhood of node p  that affect the numerical solution. So, we have: 

1

ˆ( , ) ( ) ( ) ( ), .
N

h
j j

j

v t v tφ
=

= =Φ ∈Ω∑ pp p p v p  (15) 

Substituting the MK interpolation Eq. (15) in Eq. (14) the following matrix system for all points will be obtained: 

( )

( )

( )

1 1 2 0 1 1

0 1 1
1

2 0 1
1

2

.

n n n n

n

k n k n k n k
k

n

k n k n k
k

c

c d

a b

µ µ

λ

+ − +

− + − − −
=

− + −
=

− = − +

− − +

− −

∑

∑

C K V CV CV S

C V V V

C V V

 
(16) 

Since the shape functions of the MK method have the δ− Kronecker property, matrix C  is an identical matrix. Also: 

4 1, ,

1,
( ) , , ( ,( 1) ), ( ,( 1) ).

0, ,I n I I n I IIj j Ij j

I j
s n v n

I j
φ λ φ τ τ+

 == = = ∆ = + = + ≠
p p pC K S V   

For 0,n =  from the initial condition (1) and central finite difference equation, one obtains: 

1 1
1 1

( ,0)
( ) 2 ( ),

2
g G

t
τ

τ
−

−

∂ −
= = ⇒ = −

∂
p

p p
V V V

V V  (17) 

in which [ ]1 .( ) ( ), , ( )
T

mG g g= …p p p   
 So, we get: 

( )1 0 1 2 0 0 1( ) 2 ,c c Gµ µ τ+ − = + +C K V CV S  (18) 

and for the other ( 0),n n>  Eq. (16) will be used. 

Remark 1: We have done our calculation by using MATLAB software on an Intel(R) Core (TM) i7-7700 PC with a 3.60-GHz CPU and 
32-GB RAM. 

4. Numerical Examples 

In this section, three examples in 2D and one example in 3D are presented to illustrate the capability and validity of our scheme. 
To show the accuracy of the MLPG method, the L∞  errors are considered as follows: 

1max | ( ) ( ) |,h
i N i iL v v∞ ≤ ≤= −x x  (19) 

where ( )iv x  and ( )h
iv x  are the exact and numerical solutions at node ,ix  respectively. 

Moreover, to show the efficiency of the proposed scheme, the following convergence order in the time variable is calculated: 

1

2

1

2

( )
log

( )
order ,

log

L

L
c

τ

τ

τ

τ

∞

∞

     
− =

     

  

in which 1( )L τ∞  and 2( )L τ∞  are L∞  errors related to 1τ  and 2 ,τ  respectively. 
Moreover, the global data density of X  in regular and irregular domain Ω  is as follows [51]: 

, supmin .
iX X ih hΩ ∈

∈Ω
= = −x

x

x x‖ ‖   

This relation will define subdomains and the size of support in the correlation function for MK interpolation. 
 

  

Fig. 3. Rectangular domains with uniform (left) and nonuniformly distributed points (Right) for Example 1. 
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4.1. Example  

In this example, we suppose MHD fractional Maxwell fluid (1) in the following form: 

( , ) ( , ) ( , ) ( , ) ( , ) ( , ), ( , ) [0, ],t t tv t v t v t v t v t s t t Tα β+ + + =∆ + ∈Ω×p p p p p p pD D D  (20) 

with the analytical solution: 

2( , , ) (2 ) (1 ).v x y t t x x y y= − −   

1Ω  in Fig. 3 (left) is assumed as global domain. In this case, the distribution of nodes is regular, the boundary conditions are zero 
on all sides of 1Ω  and the initial conditions are zero. Also, 

2 2 2 2 22 2
( , , ) 2 (2 ) (1 ) 2 (1 ) 2 (2 ) .

(3 ) (3 )
s x y t t t t x x y y t y y t x x tα β

α β

− −
 
 = + + − − + − + − + Γ − Γ − 

  

To show the accuracy and validity of the proposed scheme, we solve this problem in 1.Ω  Hence, the final time is 2T =  with the 
time step size 0.001.τ =  

Also, 41 21×  regular nodes in 1Ω  are used. Figure 4 shows the absolute error for the presented method and these nodes. In this 
case, the fractional-order α  and β  are 1.9  and 0.1,  respectively. 

Figure 5 shows a comparison between the exact solution and proposed numerical scheme at 0.5y=  in 1Ω  with 1.7, 0.7.α β= =  
Table 2 illustrates the results for various fractional orders in different total times 0.5, 1, 3, 5, 7.T =  From this table, one can see 

that the proposed method is efficient for this example in large time and different values of fractional orders. These results reveal 
that the error increases with increasing the final time. The reason is that with increasing the final time, the exact solution increases 
for example, in 7,T =  the maximum of the exact solution is 3.9690 01,e+  which is significant. 

Table 2 and Fig. 4 demonstrate that our presented scheme is valid and capable of solving this problem. Now, we examine this 
example in 2Ω  and 441 nonuniform points in this global domain will be used. 

 
 

 
 

Fig. 4. The plot of analytical solution and absolute error for Example 1 at T = 1. 

 
Fig. 5. Comparison between the analytical solution and proposed scheme at 0.5, 1.7, 0.7y α β= = = for Example 1. 
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Table 2. The L∞ errors of the presented scheme for Example 1 over
1
Ω with different values of final times 0.5, 1T = top to 7.T =  

T  1.7, 0.7α β= =  1.5, 0.5α β= =  1.2, 0.2α β= =  

0.5  3.7530 05e−  3.5886 05e−  3.6909 05e−  

1  1.5149 04e−  1.5722 04e−  1.5991 04e−  

3  1.5473 03e−  1.5464 03e−  1.5469 03e−  

5  4.8491 03e−  4.8127 03e−  4.7778 03e−  

7  1.0216 02e−  1.0116 02e−  9.9667 03e−  

Table 3. The L∞ errors of the presented scheme for Example 1 over
2
Ω with 1T = and different step time sizes. 

τ  1.7, 0.7α β= =  orderc−  1.5, 0.5α β= =  orderc−  1.3, 0.3α β= =  orderc−  

0.01  3.4952 04e−  −  3.7925 04e−  −  3.6090 04e−  −  

0.01 / 2  1.7185 04e−  1.0242  1.8564 04e−  1.0306  1.7652 04e−  1.0318  

0.01 / 4  8.2675 05e−  1.0556  8.8993 05e−  1.0607  8.4459 05e−  1.0635  

0.01 / 8  3.7839 05e−  1.1276  4.0736 05e−  1.1274  3.8464 05e−  1.1347  

Table 4. Comparison L∞ errors of the presented scheme with the obtained results in [37] for Example 1 over
1
Ω at 1.T =  

dx  dy  τ  Method of [41] Present method 

0.1  0.1  0.01  2.8213 03e−  3.8464 03e−  

0.5  0.5  0.0025  6.9283 04e−  9.5128 04e−  

0.025  0.025  0.000625  1.7161 04e−  2.3635 04e−  

 

Table 3 demonstrates L∞  errors for different step times and various fractional orders. Also, the orderc−  for this scheme is 
reported in columns 3, 5 and 7. This table shows that the proposed method has almost ( )O τ  convergence order. Also, the time step 
size is 0.01.τ =  Based on the results of Table 3, one observes that the presented method is valid and accurate for irregular 
distribution points. 

To further assess the accuracy of the method, in the next table, we will test different spatial and temporal step sizes at final 
time. For this purpose, assume Eq. (20) with the following exact solution: 

3( , , ) (2 ) (1 ),v x y t t x x y y= − −   

we extract the force term ( , , )s x y t  from this exact solution.  
Table 4 illustrates a compression between our scheme and method of [37]. From this table, it can be seen that the proposed 

method is more accurate than the mentioned method. 

4.2. Example  

In this example, we suppose the following MHD fractional Maxwell fluid equation: 

( , ) ( , ) ( , ) ( , ) ( , ) ( , ), ( , ) [0, ],t t tv t v t v t v t v t s t t Tα β+ + + =∆ + ∈Ω×p p p p p p pD D D  (21) 

with the exact solution: 

( , , ) sin( )sin( )cos( ).v x y t t t x y=   

The boundary conditions are: 

3 4( , , ) sin( )sin( )cos( ), ( , ) ,v x y t t t x y x y= ∈ ∂Ω ∂Ω   

Also, the initial conditions are zero, and we have, 

22

0

( 1) ( 1)
( , , ) (2 2) (1 3 )sin( ) cos( ) sin( )cos( ).

(2 3 ) (2 3 )

j j
j

j

t t
s x y t t j t t t t t x y

j j

α β

α β

− −∞

=

  − −  = + + + + +  Γ + − Γ + −   
∑   

We solve this equation on the circular domain by using regular and irregular distribution nodes, as shown in Fig. 6. By using the 
presented algorithm on the global domain 3Ω  the results are shown in Table 5. 

Table 5 indicates the L∞  errors between our numerical method and the exact solution for this example. We assume the total 
time is 1T =  and 0.01.τ =  Also, 126 and 177 nodes are applied on the boundary and interior of 3,Ω  respectively. Column one of 
this table shows the time step sizes which decrease from top to bottom. To test the capability of this scheme, different fractional 
orders are used (columns 2, 4 and 6). Also, the orderc−  is shown in columns 3, 5, and 7. According to the results of this table, the 
present method has good accuracy compared to the exact solution on the circular domain with regularly distributed nodes. 
Moreover, this method has almost ( )O τ  convergence order. 
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Fig. 6. Circular domain with regular 3(Ω left) and irregular distribution of points (Right 4 )Ω for Example 2. 

  

  

Fig. 7. Absolute errors for different final times 1,2,3,4T = with 0.01τ = for Example 2 in
3
.Ω  

Table 5. The L∞ errors of the presented scheme for Example 2 over 4Ω with 1T = and different step times. 

τ  1.9, 0.9α β= =  orderc−  1.5, 0.5α β= =  orderc−  1.2, 0.2α β= =  orderc−  

0.01  1.2872 03 e−  - 2.8940 04e−  - 2.3106 04e−  - 

0.01 / 2  6.3599 04e−  1.0172  1.4801 04e−  0.9674  1.2116 04 e−  0.9314  

0.01 / 4  3.1323 04e−  1.0218  7.6906 05e−  0.9445  6.5329 05e−  0.8911  

0.01 / 8  1.5461 04e−  1.0186  4.2338 05e−  0.8611  3.6836 05e−  0.8266  

Table 6. The L∞ errors of the presented scheme for Example 2 over 4Ω at different final times. 

T  1.7, 0.7α β= =  1.5, 0.5α β= =  1.2, 0.2α β= =  time(s)  

0.5  5.4529 04e−  1.1961 04e−  6.7903 05e−  2.9  

1  4.7609 04e−  2.7378 04e−  2.1691 04e−  3.1  

3  1.7629 03e−  1.5377 03e−  1.0030 03e−  4.1  

5  1.8673 03e−  1.5384 03e−  8.8930 04e−  5.5  

7  3.0999 03e−  2.9802 03e−  2.4303 03e−  7.5  
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Fig. 8. Elliptical domains with regular
5

(Ω left) and irregular distributed nodes (Right
6
)Ω for Example 3. 

Figure 7 demonstrates absolute errors at different final times for 1.7, 0.7.α β= =  This figure shows that this method is accurate 
for a long time. 

Table 6 illustrates L∞  errors for this example in the global domain 4Ω  for different values of fractional orders at various final 
times. The number of points in the boundary of 4Ω  is 126, and 756 irregular nodes in the interior domain 4Ω  are selected while the 
time step size is 0.01.τ =  Note that the arrangement of nodal points is not regular. So, this scheme is efficient in nonuniformly 
distributed nodes for a circular domain. The last column of this table is CPU time while running the proposed scheme. The obtained 
results in Table 6 and Fig. 7 reveal that the presented method has good accuracy for the numerical solution of this example. 

4.3. Example 

Similar to the previous examples, we examine the capability of our scheme in two global elliptical domains 5Ω  and 6.Ω  Let the 
following governing equation of unsteady 2D flow of a MHD fractional Maxwell fluid equation: 

( , ) ( , ) ( , ) ( , ) 2 ( , ) ( , ), ( , ) [0, ],t t tv t v t v t v t v t s t t Tα β+ − + = ∆ + ∈Ω×p p p p p p pD D D  (22) 

subject to the initial conditions: 

( ) ( ), ,0 , ,0 0.tv x y v x y= =   

The exact solution is: 

2( , , ) ,x y tv x y t t e + +=   

while the function s  is as follows: 

2 2 2

0 0

( 1)( 2) ( 1)( 2)
( , , ) 2 2 .

( 3 ) ( 3 )
j j x yt t

j j

j j j j
s x y t t te t t e e

j j
α β

α β

∞ ∞
+ − + − +

= =

 + + + + = + − − × Γ + − Γ + −  
∑ ∑   

The global domains for this example are shown in Fig. 8. We assume the boundary conditions as Dirichlet type and are derived 
from the exact solution. 

Table 7 indicates the L∞  errors between the exact solution and our scheme for several fractional orders on the global domain 

5.Ω  This domain has the following form: 

2 21
1.

4
x y+ =   

We applied 400 and 1755 nodes in the boundary and interior of 5,Ω  respectively. Also, the final time is 1.T =  According to the 
results of this table, one observes that, with decreasing the time step size, the error is reduced and the method has almost ( )O τ  
order of convergence. 

Figure 9 shows the results of the exact solution and absolute error for 1T =  with 1.7, 0.7.α β= =  Also, the scatter of points the 

5Ω  is regular. To test the accuracy of the proposed method in irregularly scattering nodes, the discussion is continued on the domain 

6.Ω  

Table 7. The L∞ errors of the presented scheme for Example 3 over 6Ω with 1T = and different step times. 

τ  1.7, 0.7α β= =  orderc−  1.5, 0.5α β= =  orderc−  1.3, 0.3α β= =  orderc−  

0.001  4.4085 03e−  - 1.1195 03e−  - 1.3524 03e−  - 

0.001 / 2  2.1259 03e−  1.0522  5.3152 04e−  1.0747  6.9147 04e−  0.9678  

0.001 / 4  1.0308 03e−  1.0443  2.5488 04e−  1.0603  3.5242 04e−  0.9724  

0.001 / 8  5.0285 04e−  1.0356  1.2254 04e−  1.0566  1.8049 04e−  0.9655  
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Table 8 demonstrates the results in 6,Ω  which has the following form: 

2 2100
1.

49
x y+ =   

We applied 200 and 528 points in the boundary and interior of 6,Ω  respectively. The first column of Table 8 shows different final 
times, and other columns report L∞  errors for various values of fractional orders. The last column is CPU time. The results of this 
table show that our method has good accuracy in irregular scattering points and large final times. 

Figure 10 illustrates the absolute errors for the proposed method at different values of fractional orders at 1T =  with 0.001τ =  
over 6.Ω  

Also, in this example, elliptical domains with regular and irregular scattering nodes were discussed. Due to the results and 
figures given for domains 5Ω  and 6,Ω  it can be concluded that the method has good performance for the numerical solution of this 
example. 

  

Fig. 9. The plot of analytical solution and absolute error at 1T = for Example 3. 

  

  

Fig. 10. Absolute errors for the proposed method in different values fractional orders at 1T = with 0.001τ = for Example 3 in
6
.Ω  
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Table 8. The L∞ errors of the presented scheme for Example 3 over 7Ω at different final times. 

T  1.8, 0.8α β= =  1.5, 0.5α β= =  1.3, 0.3α β= =  CPU-time  

0.5  5.0490 04e−  7.6339 05e−  1.9721 04e−  3.5  

1  2.2424 03e−  2.8360 04e−  6.2188 04e−  5.0  

3  4.0877 02e−  6.7875 03e−  2.7245 02e−  6.0  

5  5.2255 01e−  1.6533 01e−  5.1132 01e−  7.5  

7  5.8337 00e+  2.7275 00e+  7.0554 00e+  9.0  

Table 9. The L∞ errors of the presented scheme for Example 4 over 7Ω with 0.5T = and different step times. 

τ  0.85α =  orderc−  0.75α =  orderc−  0.65α =  orderc−  

0.001  4.4085 03e−  - 9.6981 05e−  - 1.3934 04e−  - 

0.001 / 2  2.2170 04e−  1.2113  3.8535 05e−  1.3315  5.7989 05e−  1.2648  

0.001 / 4  9.5617 05e−  1.2693  1.8959 04e−  1.0233  2.1362 05e−  1.4407  

Table 10. The L∞ errors of the presented scheme for Example 4 over 8Ω with 0.5T = and different step times. 

τ  0.95α =  orderc−  0.75α =  orderc−  0.65α =  orderc−  

0.01  4.9386 04e−  - 1.9024 04e−  - 4.6256 05e−  - 

0.01 / 2  2.5305 04e−  0.9647  8.6197 05e−  1.1421  2.7820 05e−  0.7335  

0.01 / 4  1.2631 04e−  1.0025  3.9531 05e−  1.1247  1.5101 05e−  0.8815  

4.4. Example 

In the last example, consider the fractional telegraph equation with the following form: 

2 ( , ) ( , ) ( , ) ( , ) ( , ), ( , ) [0, ],t tv t v t v t v t s t t Tα α+ + =∆ + ∈Ω×p p p p p pD D  (23) 

where, 
2 2 2

3
2 2 2

,
x y z

∂ ∂ ∂
Ω⊆ ∆= + +

∂ ∂ ∂
ℝ  and the exact solution is ( )2( , , , ) .x y z tv x y z t t e− + + +=  

Also, the initial conditions are: 

7( , , ,0) 0, ( , , ,0) 0, ( , , )tv x y z v x y z x y z= = ∈Ω   

and 

2 2 2 ( )2

0 0

( 1) ( 2)( 1) ( 1) ( 2)( 1)
( , , , ) [    2 ] .

( 3 2 ) ( 3 )

j j
j j x y zt

j j

j j j j
s x y z t t t t e e

j j
α α

α α

∞ ∞
+ − + − − + +−

= =

− + + − + +
= + −

Γ + − Γ + −∑ ∑   

The boundary conditions are chosen Dirichlet and will be determined from the exact solution. To solve this problem in 3D, 872 
points on the sphere shell (blue nodes) and 459 points inside the sphere (red nodes) are used (see Fig. 11). Table 9 reports the results 
of our meshless scheme compared with the analytical solution for several fractional orders of the 3D fractional telegraph equation. 
Also, the final time is 0.5.T =  Due to the results of this table, one can be concluded that the present technique can obtain a suitable 
numerical solution for this example on a spherical domain. 

In the global domain 8,Ω  11 11 11× ×  uniform nodes are used to solve Eq. (23) by our scheme. Table 10 demonstrates L∞  errors 
for different step times and various fractional orders. Also, the convergence orders of this scheme are reported in columns 3, 5, and 
7. This table shows that the proposed method has almost ( ).O τ  Table 11 indicates the results for the 3D case with the final times 
1, 2, 3, and 4, and time step 0.01.τ =  These calculations were done for different fractional orders, and the results show that our 
scheme is accurate for this example in the large final times. 

  

  

Fig. 11. A sphere
7

( )Ω with center (0,0,0) and a cube for 3D problem domain in Example 4. 
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Table 11. The L∞ errors of the presented scheme for Example 4 over 8Ω in different final times. 

T  0.95α =  0.8α =  0.65α =  

1  3.8787 04e−  8.1082 05e−  5.1166 05e−  

2  2.3965 04e−  5.2939 05e−  4.4134 05e−  

3  5.3146 03e−  3.9878 03e−  3.0209 03e−  

4  1.4383 01e−  1.0628 01e−  9.0918 02e−  

Moreover, to show the efficiency of the proposed method in the 3D case, results are obtained on several planes of the cube. 
Figure 12 demonstrates the absolute errors between our proposed technique and the exact solution for several plates 
( 0.5, 0.9, 0.5, 0.9, 0.5, 0.9)x x y y z z= = = = = =  with the final time 1T =  and time step 0.01.τ =  This Figure and Tables 9, 10 and 11 
show the capability of our scheme for the three-dimensional mode. 

  

  

  

Fig. 12. Absolute errors in different plots at 1T = with 0.01, 0.85τ α= = in the 3D for Example 4. 
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5. Conclusion 

The Magnetohydrodynamic Maxwell fluid model is an important fractional partial differential equation. In this work, an 
efficient mesh-free method was used for its numerical solution. In this technique, we applied the moving Kriging interpolation 
method to create the shape functions of the MLPG method. Since the MK interpolation shape functions have Kronecker's delta 
property, the boundary conditions could be imposed easily. Also, to approximate the time-fractional derivative, the finite difference 
relations were be used. The validity and efficiency of this scheme were illustrated by solving three examples in 2D and one example 
in 3D. The obtained results showed the ability of our method for the numerical solution of fractional MHD flow of viscoelastic fluids 
and fractional telegraph equation. 
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