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Abstract. This study investigates two-dimensional viscous incompressible boundary layer flow involving mass transfer above an 
uninterrupted flat surface in the presence of chemical reaction. Applicable similarity transformations, transform the leading 
equations into a system of nonlinear ordinary differential equations. These equations are solved via collocation approach using 
Haar wavelets. The double solutions exist and are presented through graphs. The obtained solutions are confirmed by comparing 
them with earlier findings. The various physical quantities are enfolded and convinced carefully using numerical and theoretical 
approaches. Enhancement in Schmidt number increases the mass transfer rate for upper branch solution and reduces for lower 
branch solution. Mass immersion arises for constructive chemical reaction and mass transfer enhances for destructive chemical 
reaction. Finally, the stability analysis is performed. 

Keywords: Boundary-layer flow; Chemical reaction; Haar wavelets; Dual solutions; Stability analysis. 

1. Introduction 

In a recent study, the boundary layer flow above a fixed flat plate is one of the conventional problems in fluid mechanics, and 
a literature review of boundary layer flow past a fixed plate through a uniform free stream is widely discussed. The laminar 
steady boundary layer flow above a fixed plate leads to a third-order nonlinear differential equation with infinite boundary by 
means of similarity variables was first studied by Blasius [1]. The Blasius problem is one of the simplest third-order nonlinear 
boundary value problem. Howarth [2] numerically determined the solution to various aspects of the Blasius problem. The 
boundary layer of an electrically conducting fluid flow over a vertical plate in the presence of an effective magnetic field that is 
regular to the flow was studied by Riley [3]. Abu-Sitta [4] discussed the existence of a solution of boundary layer flow past a fixed 
plate. The boundary layer flow over a fixed plate moving continuously along static velocity in an inactive fluid, and determined 
same problem as accomplished by Blasius for various boundary conditions was discussed by Sakiadis [5]. Abdulhafez [6] 
investigated the boundary layer problem for parallel stream over moving plate and resultant studies involve Blasius and Sakiadis 
problems as a special case. Afzal et al. [7] extended the model [6] by considering the momentum heat transfer. The effect of Hall 
on magnetohydrodynamics (MHD) past a continuously moving flat plate was deliberated by Watanabe and Pop [8]. The authors 
[9,10] prolonged the problems of Blasius and Sakiadis to examine the influence of thermal radiation.  Hussaini et al. [11] analyzed 
the flow over a plane surface moving with static velocity in the opposing orientation of the stable mainstream. The aspects of 
mixed convection flow over moving in parallel or opposing to a free stream were discussed by Lin et al. [12]. The researchers [13-
16] analyzed various aspects of the convectional properties of fluid over different geometries under the influence of thermal 
radiation, heat transfer, and porous medium. Wang [17] determined an approximate solution of the Blasius equation using the A-
domain decomposition method. The free convective unsteady flow of viscoelastic fluid above an infinite electrical conductivity of 
a vertical plate with an infinite insulator in the appearance of a transversal magnetic field was analyzed by Chowdhury [18]. In 
this area, many researchers [19-24] have conducted similar kinds of investigations for different conditions and obtained the 
important features of dual solutions. 

The analysis of the boundary layer flow of a mass transfer produces the most important for the extension of the theory of 
divorce process and chemical kinetics. Also, the phenomenon of mass and heat transfer has accepted a significant consideration 
of contemporary investigators because of its immense pertinence in reservoir engineering, chemical industries, and numerous 
diverse processes. Chambre and Young [25] demonstrated the diffusion of a chemically reactive species in a laminar boundary 
layer flow over a flat surface. Soundalgekar [26] studied mass transfer gear as flow past an impetuously instituted vertical infinite 
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plate below many physical conditions. The investigators [27-29] analyzed the similarity solutions of the chemically reactive 
diffusion family for hybrid convection flow above a moving horizontal surface. The influence of chemical reaction and magnetic 
field for heat and mass transfer on laminar boundary layer flow across a semi-infinite horizontal plate was demonstrated by 
Anjalidevi and Kandasamy [30, 31]. Postelnicu [32] studied the Soret and Dufour impact for mass and heat transfer through free 
convection past a vertical surface in the presence of chemical reaction and permeable porous media. Bhattacharyya and Layek 
[33] determined the exhaustive similarity solutions of MHD enforced convective mass dissipation due to chemical reaction above 
a permeable porous surface through suction or blowing. Many researchers [34-39] analyzed the impact of chemical reaction on 
the stretching /shrinking sheet flow problems. Sachdev et al. [40] discussed the class of boundary value problems over 
unbounded domain by using semi-numerical methods. Kudenatti et al. [41] analyzed the solution to the problem of stretching 
plate through pressure gradient and suction by using an exact analytical method. Rasheed and Anwar [42] investigated the MHD 
flow of viscoelastic fluid and explored several important accepts of revised forms of thermal flux. Awati [43] and Makinde et al. 
[44] determined the Dirichlet series and approximate analytical methods for the solution of MHD boundary layer flow of Casson 
fluid over a stretching/ shrinking sheet problem. Awati et al. [45] examined the MHD flow problem with a linear stretching 
surface through approximate analytical method and Dirichlet series. The influence of an inclined magnetic field on the Ree-
Eyring nanofluid model over a stretching surface was demonstrated through the differential transformation method by Puneeth 
et al. [46]. Awati [47] discussed an approximate analytical and Dirichlet series solution of MHD viscous flow due to a shrinking 
sheet as well as suction/blowing problems. Based on temperature-dependent properties, Alzahrani et al. [48] examined the 
micropolar fluid flow over a vertical stretching sheet. Hussian et al. [49] illustrated the significant impact of chemical reaction on 
hybrid nanofluid flow generated by curved nonlinear stretchable surface. Recently, Anwar et al. [50] addressed the fluid flow 
model in the presence of linear order chemical reaction with thermal radiation through finite difference and finite element 
approach.    

Haar wavelet collocation method (HWCM) is one of the effective semi-numerical techniques for determining the solution of 
infinite boundary value problems (BVPs). The construction of HWCM involves a couple of piecewise constant approximation 
functions and these functions are integrated very easily. The important features of Haar approximations which are orthogonal 
and also form a reliable transform basis, the other properties are non-differentiable on account of disconnected in disintegrating 
points. In view of Lepik [51], there are two main properties to prevail over the difficulties. The first aspect is that the quadratic 
waves are normalized with interpolating splines etc. Chen and Hasio [52, 53] predicted the second one; for considering the 
derivative of the highest order involved in the equation can be expressed in terms of Haar functions. Lepik [54, 55] used the 
HWCM method to determine the solution of BVPs that automatically satisfy the boundary conditions. Majak et al. [56] studied the 
convergence of HWCM and predicted that the convergence is of order O(1/2J+1)2, where J is the resolution level. Recently, Awati et 
al. [57] analyzed heat and mass transfer features during the convective boundary layer flow of a nanofluid moving over a 
nonlinearly stretching sheet through a Haar wavelet. Awati and Mahesh [58] discussed unnatural convection heat transfer over a 
stationary and moving semi-infinite plane with nanofluids using Haar wavelets. The choice of the HWCM is highly encouraged as 
it is easy to implement with less computation cost, utilizing a few numbers of grid points great amount of accuracy in the 
solution can be achieved in comparison with other available semi-numerical approaches. Finally, the method is extremely 
suitable for solving the boundary value problem as the boundary constraints are satisfied automatically.     

From increasing computational/technological applications, innovative numerical and semi-numerical algorithms it is 
motivated to analyze the mass transfer under the influence of chemical reaction of first order on an uninterrupted moving 
horizontal plate with constant velocity in similar or reversely to a uniform free stream. Using the appropriate transformation 
variables, self-similar nonlinear ordinary differential equations (NLODEs) with infinite domain are derived from governing 
equations. These resultant equations are solved through a semi-numerical approach using HWCM. The impact of several 
parameters characterizing the governing flow is discussed in detail. 

2. Mathematical Formulation  

In the existence of linear order chemical reaction, consider viscous incompressible steady 2D laminar flow with mass transfer 
above the moving flat plate. Assume that the plate is advancing with fixed velocity wU  in a direction assisting or opposing to the 
flow and U∞  be the velocity of a homogeneous free stream. The x -axis and y -axis are respectively assigned along the direction 
of the plate and normal to it, as shown in Fig. 1.  

 

Fig. 1. The schematic diagram of the physical problem. 
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The governing equations of the flow based on boundary layer approximation and concentration distribution can be written as 
[39]: 

0,
u v

x y

∂ ∂
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 (1) 
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2 ,
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u v
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υ
∂ ∂ ∂
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where u  and v  are the components of velocities in x  and y  directions, respectively, ( ),υ µ ρ=  ,µ  ,ρ  ,C  ,wC  ,C∞ D and 
( ) 0R x LR x=  respectively denotes the kinematic viscosity, coefficient of fluid viscosity, density of the fluid, concentration, plate 

concentration, concentration at free stream, diffusion coefficient and variable reaction rate for constant 0R  and reference length 
L. The boundary constraints concerning velocity and concentrations for Eqs. (2) and (3) are: 

,       0,        w wu U v C C= = =       at    0,y =  (4) 

                                                         ,u U∞→       C C∞→         as    ,y → ∞       (5) 

The stream function ( ),x yψ  is expressed as: 
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Equation (1) satisfied directly in concerned with Eq. (6). Introducing the similarity variables for ψ  and C  as: 

U
y

x
η

υ
= ,  ( )U x fψ υ η=     and     ( ) ( ),wC C C C φ η∞ ∞= + −  (7) 

where η  represents similarity variable and wU U U∞= +  is composite velocity [8]. Utilizing Eqs. (6) and (7) in Eqs. (2) and (3), the 
resultant equations become: 

1
0,

2
f ff′′′ ′′+ =  (8) 

1
0,

2
Scf Scφ φ βφ′′ ′+ − =  (9) 

where Sc Dυ=  and 0LR Uβ =  are Schmidt number and reaction rate factor, respectively. The chemical reaction is destructive if 
0β >  and constructive if 0.β <  

The corresponding boundary constraints from Eqs. (4) and (5) are: 

( ) 0,f η =  ( ) ,f η α′ =  ( ) 1φ η =   at   0,η =  (10) 

( ) 1 ,f η α′ → −  ( ) 0φ η →  as     ,η→ ∞  (11) 

where 1
wU Uα −=  is the ratio of velocity factor. 

3. Haar Wavelets  

The simplest orthonormal wavelet is a Haar wavelet with compact support and made up of piecewise constant functions. The 
features of these wavelets are explicitly expressed involving both scaling and wavelet functions, generating Haar matrices that 
are compactly supported, orthogonal, and sparse. 

The domain of integration [ ],P Qη ∈  is divided into 2M  equal subintervals of length ( ) 2 ,Q P Mδη = −  where 2 ,JM =  J
designates the maximal level of resolution. The ths  Haar wavelet is defined as: 
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where 1( ) 2 ,s P kζ µδη= + 2( ) (2 1) ,s P kζ µδη= + +  3( ) 2( 1) ,s P kζ µδη= + + ,M mµ =   

1,s m k= + +  2 .jm =  (13) 

For Eqs. (12) and (13), 0,  1,  2,  . . . j J=  and 0,  1,  2,  . . . 1k m= −  denotes the dilation and translation factors, respectively. For 
1,s =  the scaling Haar wavelet function becomes: 
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The Haar wavelet expansion of ˆ ( )f x  over a finite interval [ ],P Q  is expressed as: 

1

ˆ ( ) ( ),s s
s

f x a h x
∞

=

= ∑ ɶ  (14) 

where saɶ  are the Haar wavelet coefficients as: 
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To obtain the Haar wavelet coefficients through integral square error minimization condition, we have: 
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where ˆ ( )f x  and ˆ ( )Mf x  are respectively denotes the exact and approximate functions. The thn  order multiple-integral of Haar 

function of Eq. (12) is calculated as: 
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where 1 ,n N≤ ≤  1 2 .s M≤ ≤  For 0n =  tends to ( )sh η  and the integrals can be evaluated for other non-zero values as: 
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This relation is valid for 1s >  and in the case of 1,s =  we have 1 ,Pζ =  2 3 Qζ ζ= =  and: 
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For 1 2 ,l M≤ ≤  consider the collocation points 10.5( ),l l lη η η −= +  where lη  designates the thl  lattice point with ,l P lη δη= +  
1 2 .l M≤ ≤  

4. Solution Method by HWCM 

Chen and Hasio’s [52] procedure is employed to obtain the solution of the present problem. The higher order derivatives of 
Eqs. (8) and (9) are represented by means of Haar wavelet approximation as:  

2
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where ,saɶ  sbɶ  are the unknown coefficients need to be determined. Using Eqs. (10) and (11), the corresponding lower-order 
derivatives of Eq. (19) can be written as: 
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Setting Qη∞ =  and utilizing the boundary conditions, we have: 
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where ( ),s lh η  1, ( ),s lp η  2, ( )s lp η  and 3, ( )s lp η  are square matrices of order 1 12 2J J+ +×  and 1
sC  is column matrix of corresponding order 

for 11  2  3     ,2 .Jl , , , . . . +=  The advantage of this procedure is to reduce the calculation period and rapid implementation for the 
solution of boundary value problems. The coefficients saɶ  and sbɶ  are determined by using Netown’s method. The technique 
involves the selection of non-trivial two collocation points at 0.J =  Obtained approximations are utilized for proceeding 
resolution levels sequentially. The process is carried out until the desired accuracy in the results is reached and these results are 
presented through tables and graphs. 

4.1. Error estimation 

The effectiveness of HWCM is verified by assessing the errors in the calculated numerical results. 

a. For the known exact solution cases the L∞  errors are expressed as 
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b. For the unknown analytical solution cases the degree exactness of Haar wavelet approximations is evaluated through 

solution error, given by the relation: 

1( ) ( ) / 2f J
J lf Jσ η += ∆  and 1( ) ( ) / 2 J

J lJ φ

φσ η += ∆  
(26) 

where ( ) ( ) ( )1 ,f
J J Jl l lf fη η η+∆ = −  ( ) ( ) ( )1 ,J J Jl l l

φ η φ η φ η+∆ = −  ( ) ( ){ },  J Jl lf η φ η  and ( ) ( ){ }1 1,  J Jl lf η φ η+ +  are the solutions obtained at the 
resolution level J  and 1,J +  respectively. 

In the present Haar wavelets calculation, it is observed that there is an inverse relationship between the error and .J  The 
obtained results concerning error for various resolution levels are depicted in Fig. 2. 

5. Stability Analysis 

For stability analysis, according to the Merkin [59] and Weidman et al. [21], the unsteady form of the problem is considered. 
The continuity Eq. (1) holds, whereas Eq. (2) and Eq. (3) are written as: 
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where t  represents the time. Introducing dimensionless variables as follows: 
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The transformed versions of Eq. (27) and (28) can be expressed as: 
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Fig. 2. Error vs. resolution level J for 0.5,Sc = 0β = and 1.α =  
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The relevant boundary conditions are: 
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To examine the stability of steady flow, 0( ) ( )f fη η=  and 0( ) ( )φ η φ η=  satisfy the boundary-value problem (30)-(33), adapting the 
technique of Weidman et al. [21] by putting:  
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where ( , )F η τ  and ( , )G η τ  are small relative to 0( )f η  and 0( ),φ η  respectively, and λ  is an eigenvalue to be determined. Infinite 
eigenvalues  1  2  3  . . .λ λ λ< < <  are obtained from the solution of the eigenvalue problem (30)-(33), if the smallest eigenvalue is 
less than zero, there is an initial growth of disturbance and unstable flow occurs. Whereas, the flow becomes stable for the 
smallest positive eigenvalue due to the initial decay of disturbance. 

Using Eqs. (34) and (35) into Eqs. (30) and (31), and linearization gives: 
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The resultant boundary conditions are: 

(0, ) (0, ),F f
e

τλτ

τ
τ τ−=   (0, ) 0,

F
τ

η

∂
=

∂
  (0, ) 0G τ =   at   0,η =  (38) 

( , ) 0,
F
η τ

η

∂
→

∂
    ( , ) 0G η τ →     as    .η→ ∞  (39) 

The steady-state solutions 0( ) ( )f fη η=  and 0( ) ( )φ η φ η=  of Eqs. (36) and (37) are achieved by setting 0.τ =  The functions 

0( ) ( )F Fη η=  and 0( ) ( )G Gη η=  in Eqs. (36) and (37) investigate the initial growth or decay of Eqs. (34) and (35). For this, the following 
linear eigenvalue problem needs to be solved:  

0 0 0 0 0 0

1 1
0,

2 2
F f F f F Fλ′′′ ′′ ′′ ′+ + + =  (40) 

0 0 0 0 0 0( ) 0,
2 2
Sc Sc

G f G F ScGφ β λ′′ ′ ′+ + − − =  (41) 

The corresponding boundary conditions are: 

0( ) 0,F η =       0( ) 0,F η′ =    0( ) 0G η =     at    0,η =  (42) 

0( ) 0,F η′ →      0( ) 0G η →      as    .η→ ∞  (43) 

The stability of solution of a steady-state flow is done by determining the smallest eigenvalue  1,λ  which follows from Harris 
et al. [60], the condition  0( ) 0F η′ →  as η→ ∞  has been rested and solving Eqs. (40) and (41) numerically for a fixed value of λ  
satisfying the boundary condition (42). 

Table 1. The numerical values of (0)f ′′ for α various values. 

α  Blasius [1] Sakiadis [5] 
Ishak et al. [20] Bhattacharyya [39] HWCM 

Upper branch Lower branch Upper branch Lower branch Upper branch Lower branch 

-0.5 --- --- 0.3990 0.1710 0.39895 0.17103 0.397861 0.171025 

-0.4 --- --- 0.4357 0.0834 0.43566 0.08336 0.435601 0.083230 

-0.3 --- --- 0.4339 0.0367 0.43387 0.03672 0.433867 0.033470 

-0.2 --- --- 0.4124 0.0114 0.412437 0.01143 0.412369 0.0114 

-0.1 --- --- 0.3774 0.0010 0.37739 0.00105 0.377389 0.0010 

0 0.332 --- 0.3321 --- 0.33206 --- 0.332060 --- 

0.5 --- --- 0 --- 0 --- 0 --- 

1 --- -0.4438 -0.4438 --- -0.44375 --- -0.443923 --- 
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Table 2. The smallest eigenvalue  1λ for various values of .α  

α  Upper branch Lower branch 

-0.2 0.32050 - 0.07728 

-0.3 0.26622 - 0.09541 

-0.4 0.19913 - 0.09821 

-0.5 0.10585 - 0.07325 

-0.51 0.09305 - 0.06723 

-0.54 0.04050 - 0.03499 

-0.548 0.00676 - 0.00647 

-0.548247 0.00002 - 0.00001 

6. Result and Discussion 

The semi-numerical method described in section 4 is used to determine the solution of self-similar Eqs. (8) and (9), satisfying 
the boundary constraints (10) and (11) for various values of governing parameters viz. the Schmidt number ( ),Sc  velocity ratio 
parameter ( ),α  and reaction ratio parameter ( ).β  The influence of these parameters on the solutions is studied and obtained 
outcomes are expressed through tables and graphs. The skin friction coefficients, ( )0 ,f ′′  for different values of α  are obtained 
using HWCM agree with a solution by Blasius [1], Sakiadis [5], Ishak et al. [20], and Bhattacharyya [39] as presented in Table 1.  

Figure 2 shows the estimation of error along the resolution level, initially the error is too high and later it reduces as the 
resolution level increases. The maximum error is drawn and error estimation is determined at each point of the domain of the 
flow. To estimate error ( )Jσ  given in Eq. (26) is analyzed before finding the solution. In the present case, the coupled nonlinear 
system of Eqs. (8) and (9) obeying the boundary constraints (10) and (11) which cannot be solved in terms of closed form. The 
variations in the solution error ( )Jσ  for 1,α =  0β =  and  = 0.5Sc  is predicted by Eq. (26) and are shown in Fig. 2. It depicts that 
enhancement in J  reduces the error curve for f  and φ  on log scale and causes degrading of error to the tolerance. Also, the 
error decreases much faster which shows the efficiency of HWCM.  

  

Fig. 3. Haar wavelet coefficients
s

aɶ and
s

bɶ for resolution 5J = at 0,α = 0.2β = and 1.Sc =  

 

Fig. 4. Haar wavelet coefficients
s

aɶ and
s

bɶ for resolution 6J = at 0,α = 0.2β = and 1.Sc =  
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In this semi-numerical method, we shall discuss two important aspects in detail. The first case, determination of unknown 
Haar coefficients saɶ  and sbɶ  to obtain the convergent solution of the flow problem, which does not depend upon the flow 
parameters but varies with the resolution level .J  As J  increases, i.e., J = 5 or 6, the number of coefficients saɶ  and sbɶ  in the 
series of Eq. (23) also increases by 64 or 128 coefficients. Figures 3 and 4 present the coefficients of saɶ  and sbɶ  for 1,α =  0.2β =  
and  = 1,Sc  depicts the value of the coefficient approaches to zero. Also, using a few number terms in the series produces a more 
accurate solution. In the second case, the coefficients saɶ  and sbɶ  are either positive or negative and follow the same pattern for 
different resolution levels, these coefficients are small in the sense of absolute value. The sign changes in the coefficients 
indicate that the solution experiences the breakdown. 

The four different cases of α  have been studied; the first one, 0 1,α< <  the fluid and plate move in the parallel long same 
orientation, the second situation deals with an immovable plate for 0;α =  the third circumstance is 0α<  or 1,α>  for the fluid 
and plate moving in the opposite direction and the last case, 1,α =  for the movement of the plate in absence of fluid velocity [5]. 
In this study, the value of 1α≤  is considered. In literature [7, 20] similar kind of discussion is made and observed that the 
solution obtained is unique when 0,α>  dual natured solution exists when 0.548427 0α− ≤ ≤  and no boundary layer exists 
when 0.548427,α<−  i.e. separation occurrence between plate surface and boundary layer. The variation of ( )0f ′′  with α  is 
demonstrated in Fig. 5 and the dual solutions are evaluated. The values of ( )0f ′′  for lower branch reduce and for the upper 
branch, they initially increase (for some negative values of α  and gradually decay with ).α  

Figures 6 and 7 present the values of concentration gradient at the plate ( )0 ,φ′−  is proportional to the mass transfer rate 
against α  for various values of Sc  and ,β  respectively. The solution with a dual nature is encountered for concentration 
distributions. Further, the enhancement in Sc  enhances the values of ( )0φ′−  for upper-branch solutions and drops in the case of 
lower-branch solutions. For both solutions, the values of ( )0φ′−  decreases and increases respectively for the constructive and 
destructive chemical reaction due to the mass transfer rate. For a constructive chemical reaction, it is observed that mass 
absorption takes place concerning certain values of .α  Whereas, in the case of upper branch solution the absorption of mass for 
constructive reactions occurs when α  approaches to unity and for lower branch solutions mass absorption rate is higher with an 
increase of α  for constructive chemical reaction. Blasius [1] and Sakiadis [5] found that the upper branch solution which is only 
one solution in the range 0 1.α≤ ≤  The discussion made in section 5 and Table 2 reveals that the upper branch solutions are 
stable with positive eigenvalues and lower branch solutions are unstable with negative eigenvalues. 

 

Fig. 5. Skin friction coefficient ( )0f ′′ for various values of α at 1Sc = and 0.β =  

 

Fig. 6. Concentration gradient at the sheet ( )0φ′− vs. α for various values Sc at 0.β =  
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Figures 8 and 9 present the variations in velocity ( )f η′  and concentration ( )φ η  profiles respectively concerning with ,α  the 
dual profiles are drawn ( 0).α <  It predicts that, with enhancement in magnitude of ,α  the thickness of the momentum boundary 
layer enhances for the upper branch and reduces for lower branch solutions as shown in Fig. 8. Concerning to the enhancement 
in the magnitude of ,α  ( )φ η  at a particular point strictly increases for upper branch and exhibits the reverse nature for the lower 
branch solutions. Also, the thickness of the solute boundary layer enhances and reduces respectively for upper and lower branch 
profiles with increasing values of α  (in sense of magnitude). The graphs reveal that in comparison with the upper branch 
solution, the thickness of boundary layer flow for lower branch solutions is always thicker. 

 

Fig. 7. Concentration gradient at the sheet ( )0φ′− vs. α for various values of β at 0.5.Sc =  

 

Fig. 8. Velocity profiles (0)f ′ for various values of .α  

 

Fig. 9. Concentration profiles ( )φ η for various values of α at 0.5Sc = and 0.2.β =  



10 Vishwanath B. Awati et al., Vol. x, No. x, 2024 

 

Journal of Applied and Computational Mechanics, Vol. xx, No. x, (2024), 1-13 

 

Fig. 10. Concentration profiles ( )φ η for different values at 0.5,α = − 0.β =  

 

Fig. 11. Concentration of ( )φ η for various values of β at 0.5Sc = and 0.5.α = −  

Figure 10 demonstrates the variations in profiles of ( )φ η  for different values of Sc. The dual nature concentration profiles 
exhibited that the lower branch profiles of the non-dimensional concentration ( )φ η  initially increases with increasing values Sc, 
get reverted in the mid-region, and curves tend to merge in the far field region. Whereas, the profiles of ( )φ η  show the contrary 
behavior of upper branch profiles concerning with increasing values of Sc at any point. The definition of Sc confirms the inverse 
relationship among the mass diffusivity and Sc. Thus, the concentration thicknesses of the boundary layer for both solutions 
decrease due to enhancement of Sc. In reality, the solute boundary layer thickness becomes thinner which causes a reduction in 
diffusion coefficient due to an increase in .Sc  

In Fig. 11, the variation of concentration profiles for various values of β  is illustrated. In destructive chemical reaction, the 
thickness of the solute boundary layer and solute profiles of both solutions decreases. In particular, for constructive chemical 
reaction both solution profiles increase. It is also significant to view that the appearance of concentration exceeds for the 
constructive reaction which indicates that the mass absorption occurs and it confirms that the negative value of ( )0φ′−  for 0β <  
in some conditions. Physically, intensified constructive chemical reaction parameter leads to constructive chemical reaction of 
higher rate that efficiently produce a greater amount of fluid species and result in an increase of concentration distribution. For 
destructive chemical reaction factor the opposite trend is noticed as reported in [50]. 

7. Conclusion 

Based on the above analysis, the following conclusions are drawn: 
a. The method discloses a double solution for the concentration distribution with a velocity field in the interval

0.548427 0.α− ≤ ≤  
b. The increase in Schmidt number leads to decreases in the thickness of the concentration boundary layer for upper and 

lower branch solutions.  
c. The stability analysis of the problem reveals, due to negative eigenvalues the lower branch solution is unstable, and the 

upper branch solution is stable as obtained in the case of eigenvalues are positive.   
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Nomenclature 

C  Concentration [kg/m3] 0R  Constant 

,wC C∞  Plate and free stream concentrations [kg/m3] Sc  Schmidt number 

D  Diffusion coefficient [m2/s] U  Composite velocity [m/s] 

f  Non-dimensional stream function wU  Plate velocity [m/s] 

f ′  Dimensionless velocity U∞  Free stream velocity [m/s] 

L  Reference length [m] ,u v  Velocity components [m/s] 

R  Variable reaction rate [1/s] ,x y  Distance along the plate [m] 

Greek symbols 

α  Velocity ratio parameter ρ  Fluid density [kg/m3] 

β  Reaction rate parameter υ  Kinematic viscosity [m2/s] 

η  Similarity variable φ  Non-dimensional concentration 

µ  Coefficient of fluid viscosity [kg/(m.s)] ψ  Stream function 
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