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Abstract. This work involves the study of the effects of moving loads in an isotropic, homogeneous, micropolar, porous 
thermo-viscoelastic solid material with two temperatures. The problem is solved in the context of Green-Naghdi theory (G-N II 
and G-N III). The analytical expressions of physical quantities in the physical domain are obtained by Normal modal analysis. 
These expressions are numerically evaluated for a given material and shown graphically by comparing the G-N II and G-N III 
theories with and without moving initial stresses. 
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1.  Introduction 

The investigation of porous media exhibiting both viscoelastic and thermal characteristics, along with their response to 
diverse stimuli, continues to be a critical field of research, several works [1–7] explored employing mechanical models to 
represent linear viscoelastic behavior and proposed solutions to linear boundary value problems for viscoelastic material with 
temperature fluctuations in the dynamic and quasi-static cases. For this scientific field, several researchers [8–10] related the 
solutions of the linear problems of visco-elastic to the corresponding elastic one and proposing an approximation technique for 
these solutions. In these books [11–13], some boundary value problems of thermo-viscoelasticity and coupling problems of 
continuum mechanics are expressed, referring to experimental results for shedding light on the mechanical properties of 
viscoelastic materials. Here are some works [14–16] in which were discussed some problems of viscoelasticity. Regarding the 
elastic micropolar material theory and the description of the properties of these materials, Eringen [17] proposed it with the 
continuum micropolar mechanics theory, which considers the microstructure of the material. As for the heat conduction 
equations and the thermal aspect, there are several theories, that introduce generalized thermoelasticity, which presents the 
coupled relation between the thermal and mechanical effects on the elastic bodies, including the three models proposed by 
Green and Naghdi [18–20] (GN-I, II, and III). The linearized version of model I corresponds to the classical thermoelasticity theory. 
In model II, the internal entropy production rate is assumed to be equal to zero, which means that there is no thermal energy 
loss. Model III combines Model I and Model II in one equation with a parameter for energy dissipation. In these works [21–27], 
some problems of thermoelasticity and viscosity are discussed in the context of some different thermal conduction theories. The 
theory of elastic materials that contain voids focuses on elastic materials riddled with small, distributed cavities, known as voids, 
whose volume is one of the fundamental kinematic variables. For this theory, Nunziato and Cowin [28] demonstrated the 
connection between changes in void volume and an internal energy dissipation phenomenon, which in turn gives rise to the 
material's relaxation properties. In contrast, the linear theory of elastic materials with voids, pioneered by Cowin and Nunziato 
[29], treats the void volume fraction as a separate and independent kinematic variable. Several investigators [30–33] have 
conducted studies on this theory on many sides, including plane wave behavior in the material, the influence zone theorem, the 
heat flow-dependent void thermoelasticity theory, and the viscoelastic behavior of the porous mediums. Iesan [34] provided a 
development of the mentioned linear theory based on the work of Cowin and Nunziato [29]. In other work, Iesan [35] presented 
two models for linear and non-linear theories of viscous thermo-elastic materials containing voids. Some different issues of 
thermo-viscoelasticity with voids are discussed here [36–40]. There is a theory of heat conduction presented in the works [41–43] 
that depends on two different temperatures: the conduction temperature and the thermodynamic temperature. Boley and Tolins 
[44] found that these two temperatures, and strain, are represented in the form of traveling waves plus reactions that occur 
instantaneously throughout the body. The element that distinguishes the two-temperature thermoelasticity (2TT) from the 
classical theory (CTE) is a constant (depending on the material properties) called the temperature difference. In these works [45–
47], some different problems of thermoelasticity with two temperatures were discussed. 
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Fig. 1. Schematic configuration of the half-space. 

2. Formulation of the Problem 

The problem is formulated in the 2-dimensional Cartesian coordinates in half-space 0,z≥  where ( , 0, )u w=u  is assumed to 
be a function of ( , , )t x z  as depicted in Fig. 1. Iesan [37] and Green and Naghdi [22] formulated the basic linear equations which 
describe the mechanical state for a viscoelastic, homogeneous, micropolar, thermally conducting and isotropic medium 
containing voids with two temperatures under moving loads in the absence of body forces: 

* * 2 * * * * *( ) ( ) ( . ) ( ) ,T bµ κ µ λ ν κ ϕ φ ρ+ ∇ + + ∇ ∇ − ∇ + ∇ + ∇ =×u u uɺɺ  (1) 

* * * * * *( ) ( . ) ( ) ( ) 2 ,Jα β γ ϕ γ ϕ κ κ ϕ ρϕ× ×+ + ∇ ∇ − ∇× ∇ + ∇ − =u ɺɺ  (2) 

* 2 * 2
1 2 ( . ) ( ) ,A B m Tφ ξ φ ξ φ τ ρχφ∇ − − − ∇ + ∇ + =uɺ ɺɺ  (3) 

* 2 2 * 2
0 0( ) .eC T T e mT K Kρ ν ς φ θ θ+ + − ∇ = ∇ + ∇ɺɺ ɺ ɺɺɺ  (4) 

The relations between stresses and displacements are: 

,
* * * * * *

,,
*( ) [ ] ,kij i k ki j j j ji k iu u u T bσ µ µ κ κ ε ϕ λ ν φ δ= + + −+ − +  (5) 

* *
,

*
, , ,ij ij ik jk j im α δ β ϕ γ ϕϕ= + +  (6) 

2(1 ) .T a θ= − ∇  (7) 

The parameters * * * * * * * * *, , , , , , , ,b A Bλ µ ν κ α β  and *γ  are defined as: 

* * * * *
0 , 1 , 0 , 2 , 3 ,(1 ), (1 ), (1 ), (1 ), (1 ),t t t t tb b A Aλ λ α µ µ α ν ν ν α α= + ∂ = + ∂ = + ∂ = + ∂ = + ∂  

(8) 
* * * *

4 , 5 , 6 , 7 ,(1 ), (1 ), (1 ), (1 ),t t t tB B α α α α β β α γ γ α= + ∂ = + ∂ = + ∂ = + ∂  

*
8 , 0 0 1 8

1
(1 ), (3 2 ) , (3 2 ) ,t t tκ κ α ν λα µα κα α ν λ µ κ α

ν
= + ∂ = + + = + +  

The dot notation is used to denote time differentiation. Equation (1) can be expressed in the xz−plane by two equations 
below: 

2 2
1 , 8 , 0 , 1 , , 0 , , 8 , 2, 2 , , ,[ (1 ) (1 )] [ (1 ) (1 )] (1 )(1 ) (1 ) (1 ) ,t t t t x t x t x t x ttu e a b u+ ∂ + + ∂ ∇ + + ∂ + + ∂ − + ∂ − ∇ − + ∂ + + ∂ =µ α κ α λ α µ α ν ν θ κ α ϕ α φ ρ  (9) 

2 2
1 , 8 , 0 , 1 , , 0 , , 8 , 2, 2 , , ,[ (1 ) (1 )] [ (1 ) (1 )] (1 )(1 ) (1 ) (1 ) ,t t t t z t z t z t z ttw e a b w+ ∂ + + ∂ ∇ + + ∂ + + ∂ − + ∂ − ∇ + + ∂ + + ∂ =µ α κ α λ α µ α ν ν θ κ α ϕ α φ ρ  (10) 

where , , .x ze u w= +  For simplifications, the following dimensionless quantities are used: 

2 2
1 1 1

1 0 0 0 0

1
, , { , } { , }, , , ,i i i i i i

c c c
x x u u T T t t

c T T T T

ρ ω ρ ρω
θ θ φ φ ϕ ϕ ω

ν ν ν
′ ′ ′ ′ ′ ′ ′= = = = = =

ɶɶ
ɶ  

(11) 

2 2
1 0

2
0 0 1 1

1 1
, , , , ,

( 2 )
e

ij ij ij ij

e

C c T
m m a a

T T c c K C

ρ νω
σ σ ω ε

ν ν ρ λ µ κ
′ ′ ′= = = = =

+ +

ɶ
ɶ  

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8{ , , , , , , , , } { , , , , , , , , },α α α α α α α α α ω α α α α α α α α α′ ′ ′ ′ ′ ′ ′ ′ ′ = ɶ  

22
2 2 2 2 2 32
1 2 3 12 2

1 1

( 2 )
, , , , .

cc
c c c

c c

λ µ κ µ κ
δ δ

ρ ρ ρ

+ +
= = = = =  
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In the non-dimensional variables (11), Eqs. (9) to (10) and (2) to (4) become, respectively (after dropping the dashed for 
convenience): 

2 2 2 2 2 2
1 , 1 8 , 1 0 , 1 , ,

2 2
1 8 , 2, 0 , , 1 2 , , ,

[ (1 ) (1 )] [(1 2 )(1 ) (1 )]

(1 ) (1 )(1 ) (1 ) ,

t t t t x

t x t x t x tt

u e

a a u

+ ∂ + + ∂ ∇ + − − + ∂ + + ∂

− + ∂ − + ∂ − ∇ + + ∂ =

δ α δ α δ δ α δ α

δ α ϕ ν θ α φ
 (12) 

2 2 2 2 2 2
1 , 1 8 , 1 0 , 1 , ,

2 2
1 8 , 2, 0 , , 1 2 , , ,

[ (1 ) (1 )] [(1 2 )(1 ) (1 )]

(1 ) (1 )(1 ) (1 ) ,

t t t t z

t z t z t z tt

w e

a a w

+ ∂ + + ∂ ∇ + − − + ∂ + + ∂

+ + ∂ − + ∂ − ∇ + + ∂ =

δ α δ α δ δ α δ α

δ α ϕ ν θ α φ
 (13) 

2
7 , 2 2 8 , , , 2 8 , 2 3 2,(1 ) (1 )( ) 2 (1 ) ,t t z x t tta u w a aα ϕ α α ϕ ϕ+ ∂ ∇ + + ∂ − − + ∂ =  (14) 

2 2 2
3 , 4 , 5 4 , 6 7 8 ,(1 ) (1 ) (1 ) ( )(1 ) ,t t t tta a e a a a aα φ ξ φ α θ φ+ ∂ ∇ − + ∂ − + ∂ + ∇ + − ∇ =  (15) 

2 2 2
, 0 , , 9 10 , 2 3 ,(1 ) (1 ) ( ) ( ).tt t tt t ta e a aθ ε ν φ ε θ ε θ− ∇ + + ∂ + − ∇ =∇ +  (16) 

The constitutive relations (5) to (7) in non-dimensional versions take the form: 

2 2 2 2
1 , 1 , 1 8 , 1 8 ,

2 2 2
1 0 , 0 , 1 2 ,

, ,

,

(1 ) [ (1 ) (1 )] (1 )

[(1 2 )(1 ) (1 )(1 ) (1 ) ] ,

t t t t kij iji k

t t t

j

j

i j

ik k

u

u a

u

a

σ δ α δ α δ α δ α ε ϕ

δ δ α ν θ α φ δ

= + ∂ + + ∂ + + ∂ − + ∂

+ − − + ∂ − + ∂ − ∇ + + ∂
 (17) 

13 5 , 12 6 , 11 7 ,, , , ,(1 ) (1 ) (1 )k kt t ti ij j ji i jm a a aδϕ ϕα ϕα α= + ∂ + + ∂ + + ∂  (18) 

2(1 ) .T a θ= − ∇  (19) 

where , 1,...,12,ia i= 2 3, ,ξ ε ε  are defined in Appendix A. According to the Helmholtz theorem, the displacement components 

( , , ),u x z t ( , , ),w x z t  can be decomposed into potential Φ  and vortex parts :Ψ  

, , , ,, .x z z xu w=Φ + Ψ =Φ −Ψ  (20) 

Using the Eqs. (20), the system of Eqs. (12) to (16) tends to: 

2 2
0 , 0 1 2 , ,,( ,1 ) (1 )(1 ) (1 )t tt tta aδ ν θ α φ+ ∂ ∇ − + ∂ − ∂ =Φ∇ +Φ +  (21) 

2 2 2 2
1 , 1 8 , 1 8 ,, 2[ ,(1 ) (1 )] (1 )t t tttδ α δ α δ α ϕΨ+ + Ψ∂ + ∂ ∇ − + ∂ =  (22) 

2 2
7 , 2 82 2 22 , ,8 , 3 ,(1 ) (1 ) 2 (1 )t t t tta a aϕ ϕα ϕα α+ ∂ ∇ + + ∂ ∇ Ψ− + ∂ =  (23) 

2 2 2 2
3 , 4 , 5 4 , 3 7 8 ,(1 ) (1 ) (1 ) ( )(1 ) ,t t t tta a a a a aα ξ φ α θ φφ+ ∂ ∇ − + ∂ − + ∂ ∇ Φ+ ∇ + − ∇ =  (24) 

( )2 2 2 2
, 0 , , 9 , 10 , 2 3 ,(1 ) (1 ) ,tt t tt t t ta a aθ ε ν φ φ ε θ ε θ− ∇ + + ∂ ∇ Φ + − ∇ =∇ +  (25) 

where 2 2
0 0 1 0 8 0 12( ) ( ) .δ α α α δ α α δ= + − + −   

3. Normal Mode Analysis 

The considered physical quantities can be decomposed as the following form: 

 ( )
2 2{ , , , , }( , , ) { , , , , }( ) .t i n xx z t z e ωθ ϕ φ θ ϕ φ +Φ Ψ = Φ Ψ  (26) 

Equations (21) to (25) with the aid of Eq. (26) become, respectively: 

2 2
1 2 3 4 5( ,) 0( )b D b b D b bθ φΦ− + − + =  (27) 

2
6 7 8 2 ,( 0)b D b b ϕ− − =Ψ  (28) 

2 2
9 10 11 12 2 0,( ) ( )b D b b D b ϕ− + − =Ψ  (29) 

2 4 2 2
13 14 15 16 17 18 19( ,( 0) ( ) )b D b b D b D b b D bθ φ− + + −Φ + − =  (30) 

2 2 2
20 21 22 23 24 25( ,) ( 0( ) )b D b b D b b D bθ φ− + − − − =Φ  (31) 



4 Mohamed I.A. Othman and Montaser Fekry, Vol. x, No. x, 2024 

 

Journal of Applied and Computational Mechanics, Vol. xx, No. x, (2024), 1-11 

where, / ,D d dz=  and , 1,...,25,jb j=  are defined in Appendix B. Eliminating Ψ  and 2ϕ  between Eqs. (28) and (29), and also 
eliminating , φΦ  and θ  between Eqs. (27), (30) and (31), lead to the following ODEs:   

4 2
1 2 2 0,( ){ , }D d D d ϕ+ Ψ− =  (32) 

8 6 4 2
3 4 5 6( ,) 0, },{D d D d D d D d θ φΦ− + − + =  (33) 

where all the constants are defined in Appendix A. The Eqs. (32) and (33), can be factored respectively as follows: 

2 2 2 2
1 2 2( ,( } 0) ){ ,D k D k ϕ− + =Ψ  (34) 

2 2 2 2 2 2 2 2
3 4 5 6 , 0,( )( )( )( ){ , }D k D k D k D k θ φ− Φ− − − =  (35) 

where, 2 2
1 2,k k  and 2 2 2 2

3 4 5 6, , ,k k k k  are roots of characteristic equations (34) and (35), respectively, so, one has: 

4 2
1 2 0,k d k d− + =  (36) 

8 6 4 2
3 4 5 6 0.k d k d k d k d− + − + =  (37) 

The bounded solutions at z→∞  for the two equations (34) and (35) take the form: 

2

2 1
1

{ , } {1, } ,ik z
i i

i

L R eϕ
−

=

Ψ =∑  (38) 

6

1 2
3

{ , , } {1, , } ,jk z

j j i
i

L L R eθ φ
−

=

Φ =∑  (39) 

where, 1 ,iL 1 jL and 2 jL are defined in Appendix B. Using Eqs. (38) and (39) with Eq. (26), gives the following: 

2
( )

2 1
1

{ , } {1, } ,ik z t inx
i i

i

L R e ω
ϕ

− + +

=

Ψ =∑  (40) 

6
( )

1 2
3

{ , , } {1, , } .jk z t inx

j j i
j

L L R e
ω

θ φ
− + +

=

Φ =∑  (41) 

Inserting Eqs. (40) and (41) into Eq. (20), gives the components u  and ,w  that are bounded at ,z→∞  in the form: 

2 6
( )

1 3

[ ] ,ji
k zk z t inx

i i j
i j

u k R e inR e e ω
−− +

= =

= − +∑ ∑  (42) 

2 6
( )

1 3

[ ] .ji
k zk z t inx

i j j
i j

w in R e k R e e ω
−− +

= =

=− +∑ ∑  (43) 

The stress components, the micro-stress and the temperature distributions can be obtained using Eqs. (40) to (42) with Eqs. 
(17) to (19) as follows: 

( )

2
( )2 2

1 0 1
1

6
2 2 2 2 2 2

1 0 1 3 0 51 2
3

[(1 2 )(1 ) ]

[(1 2 )(1 ) { ( ) (1 )} ] ,

i

k z t inxj

k z t inx
xx i i

i

j j j j j
j

in b k R e

k b n b k n L b L R e
ω

ωσ δ δ α ω

δ δ α ω ν ω
− + +

− + +

=

=

= − − + −

+ − − + − + − − + +

∑

∑
 (44) 

2
( )2 2

1 1 0
1

6
( )2 2 2 2 2 2

1 1 0 3 0 51 2
3

[ (1 2 )(1 )]

[ (1 2 )(1 ) { ( ) (1 )} ] ,

i

j

k z t inx
zz i i

i

k z t inx

j j j j j
j

in b k R e

b k n b k n L b L R e

ω

ω

σ δ δ α ω

δ δ α ω ν ω

− + +

=

− + +

=

= − − − +

+ − − − + + − − + +

∑

∑
 (45) 

2 6
( )( )2 2

6 6 8 8 6 81
1 3

[ ( ) )] (2 ) ,ji
k z t inxk z t inx

xz i i i j j
i j

b n b b k b L R e in b b k R e
ωω

σ
− + +− + +

= =

= + − + − −∑ ∑  (46) 

2
( )

11 11 1
1

,ik z t inx
zy i i i

i

m a b k L R e ω− + +

=

=− ∑  (47) 

6
( )2 2

1
3

[1 ( )] .jk z t inx

j j j
j

a k n L R e
ω

θ
− + +

=

= − −∑  (48) 
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4. The Boundary Conditions 

For determining ( 1,2), ( 3,4,5,6),i jR i R j= = the boundary conditions at 0z=  are taken to be: 

1 2( , ), 0, ( , ).zz xx xz zyp N x t m p M x t
z

φ
σ σ σ θ

∂
=− = = = = =

∂
 (49) 

where ( , ), ( , )N x t M x t  are known functions, a load with velocity 0ν  is chosen to be acting on the surface 0z=  of the medium in 
the normal direction, so 1 0 0(1 ),p p ν= +  where, 0p  is the magnitude of the mechanical force. Using the boundary conditions (49), 
leads to the following equations:  

2 6

1 01 1
1 3

,i i j j
i j

h R h R p N
= =

+ =−∑ ∑  (50) 

2 6

2 2
1 3

0,i i j j
i j

h R h R
= =

+ =∑ ∑  (51) 

2 6

3 3
1 3

0,i i j j
i j

h R h R
= =

+ =∑ ∑  (52) 

6

4
3

0,j j
j

h R
=

=∑  (53) 

2

4
1

0,i i
i

h R
=

=∑  (54) 

6

25
3

.j j
j

h R p
=

=∑  (55) 

where, 

2 2
1 1 01 [ (1 2 )(1 )] ,i ih in b kδ δ α ω= − − − +  2 2

1 0 12 [(1 2 )(1 ) ] ,i ih in b kδ δ α ω= − − + −  (56) 

2 2
6 6 8 83 1( ) ,i i ih b n b b k b L= + − +  11 114 1 ,i i ih a b L k=−  (57) 

2 2 2 2 2 2
1 1 0 3 0 51 1 2(1 2 )(1 ) [ ( ) (1 )] ,j j j j jh b k n b k n L b Lδ δ α ω ν ω= − − − + + − − + +  (58) 

2 2 2 2 2 2
1 0 1 3 0 52 1 2(1 2 )(1 ) [ ( ) (1 )] ,j j j j jh k b n b k n L b Lδ δ α ω ν ω= − − + − + − − + +  (59) 

6 83 (2 ) ,j jh in b b k=− −  4 2 ,j j jh L k=−  2 2
5 1[1 ( )] .j j jh a k n L= − −  (60) 

 Solving Eqs. (50) to (55) for ( 1,2), ( 3,4,5,6),i jR i R j= =  by using the inverse of matrix method as follows: 

-1X = A B.  (61) 

where, 

1 11 12 13 14 15 16

2 21 22 23 24 25 26

3 31 32 33 34 35 36

4 43 44 45 46

5 41 42

6 53 54 55 56

X = , A ,
0 0

0 0 0 0

0 0

R h h h h h h

R h h h h h h

R h h h h h h

R h h h h

R h h

R h h h h

                      =                          

1 0

2

0

0
B .

0

0

p N

p

 −         =           

 (62) 

5. Numerical Results and Discussions 

The magnesium crystal-like thermoelastic micropolar material was chosen for the purpose of calculating some numerical 
results, where its physical data are given from [46] in SI units: 

 
10 1 2 3 3

0 298 , { , } {9.4,4} 10 , 1.74 10 / ,T K kg m s kg mλ µ ρ− −= = × = ×�  (63) 

7 1 3 3 1 1 27.4033 10 , 1.04 10 . , 386 , 0.15 10 .t eK C kg m K W m K aα − − − − − −= × = × = = ×  (64) 
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Fig. 2. Distribution of u in z direction.  

 

Fig. 3. Distribution of w in z direction. 

 

Fig. 4. Distribution of θ in z direction. 



Moving Loads on Thermo-viscoelastic Micropolar Solid Medium with Voids and Two Temperature 7 
 

Journal of Applied and Computational Mechanics, Vol. xx, No. x, (2024), 1-11 

 

Fig. 5. Distribution of T in z direction. 

 

Fig. 6. Distribution of
xx
σ in z direction. 

 

Fig. 7. Distribution of
zz
σ in z direction. 
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Fig. 8. Distribution of
xz
σ in z direction. 

 

Fig. 9. Distribution of φ in z direction. 

 

Fig. 10. Distribution of 2ϕ in z direction. 
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The voids parameters are: 

  
4 2 11 1 2 2 13.668 10 , 1.13849 10 , 2.0 ,A kg ms b kg m s m kgs K− − − − − −= × = × =  (65) 

  
15 2 11 1 2 2 1 3

1 21.753 10 , 1.475 10 , 0.0787 10 ,m kg m s kg m sχ ξ ξ− − − − − −= × = × = ×  (66) 

  
8 2 1 7 20.2 10 , 0.1 10 .kg ms K kg msτ ς− − − − −= × = ×  (67) 

The micropolar parameters are: 

  
2010 2 7 210 , 7.779 10 , 2 10 .N m N J mκ γ −− − −= = × = ×  (68) 

The comparisons were carried out for: 

1 2 00.45, 0.025, 0.45, 0.45, 0.06, 2.05 2.05 , 2.05,p p t x i nν ω= = = = = = + =  (69) 

4 4 4 4
0 1 2 30.2544 10 , 3.9053 10 , 6.5088 10 , 0.18 10 ,α α α α− − −= × = × = × = ×  (70) 

4 3 4
4 7 81.9527 10 , 0.5088 10 , 0.2018 10 , 0 2.5.zα α α− −= × = × = × ≤ ≤  (71) 

The numerical calculation was used for presenting the distribution of the real parts of all the physical quantities 

2( , , , , , , , , )xx zz xzu w Tθ σ σ σ ϕ φ  with the distance Z in the context of G-N II and G-N III with and without moving load effect. All 
distributions are shown graphically in Figs. 2 to 10. At 0 0,ν =  the black solid lines represent the solution in the context of the G-
N II and the black dashed lines represent the solution for the G-N III. In the case of 0 0.45,ν =  the blue solid lines represent the 
solution in the context of the (G-N II) and the blue dashed lines represents the solution for the (G-N III). All physical quantities 
indicate that all curves converge to zero, and initial stress effects play an important role in these quantities. 

6. Conclusion 

The normal modal analysis was used to analyse all the physical quantities mentioned due to moving loads in a micropolar, 
porous thermo-viscoelastic solid material with two temperatures. According to the mathematical analysis of this problem, we 
can conclude that: 
 The employed solving method provides exact solutions without requiring assumptions about the actual physical quantities 

involved in the problem under consideration. 
 The values of all physical quantities mentioned converge to zero with increasing distance and are continuous. 
 It was found that moving loads also play an important role in all physical quantities considered, since the magnitude of these 

physical quantities’ changes (increases or decreases) with size. 
 It was finally concluded that the deformation of the material considered depends on the type of forces, the influence of 

moving loads, and the type of boundary conditions. 
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Nomenclature 

u  Vector of displacement ,u w  Components of displacement 

,x z  Cartesian coordinates t  Time 

,λ µ  Lame’s constants 
ijσ  Components of stress tensor 

φ  Volume fraction field *
1 2, , , ,A Bξ ξ  

, , ,mτ ς χ  

Material constants due to presence of voids 
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T  Temperature of thermodynamic θ  Conductive temperature 

0T  Reference temperature K  Thermal conductivity 

ρ  Density  
eC  Specific heat at constant strain 

( 0..8)i iα =  Viscoelasticity parameters 
tα  Coefficient of linear thermal expansion 

ijδ  Kronecker’s delta ωɶ  Characteristic frequency of the material 

1 2,c c  Longitudinal and shear wave velocities in the medium n  The wave number in x-direction 

ω  The frequency ODE Ordinary differential equation 

, ,/ , /t tt u u t∂ = ∂ ∂ = ∂ ∂     1i= −  
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