[1] de La Fuente, J., “CEO Graphenea” j.delafuente@graphenea.com.
[2] Walker, L.S., Marotto, V.R., Rafiee, M.A., Koretkar, N., Corral, E.L. “Toughening in graphene ceramic composites”, ACS Nano. 5, pp. 3182-90, 2011.
[3] Kvetkova, L., Duszova, A., Hvizdos, P., Dusza, J., Kun, P., Balazsi, C. “Fracture toughness and toughening mechanisms in graphene platelet reinforced Si 3 composites”, Scripta Materialia. 66, pp. 793-796, 2012.
[4] Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., Chen, Y. “Molecular‐level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites”, Advanced Functional Materials. 19, pp. 2297-2302, 2009.
[5] Rafiee, M.A., Rafiee, J., Srivastana, I., Wang, Z., Song, H., Yu, Z-Z., Koratkar, “Fracture and fatigue in graphene nanocomposites”, Small. 6, pp. 179-83, 2010.
[6] Civalek, O., Demir, Ç. Akgöz, B. “Free Vibration and Bending Analysis of Cantilever Microtubules Based on Nonlocal Continuum Model”, Mathematical and Computational Applications. 15, pp. 289-298, 2010.
[7] Akgöz, B., Civalek, o. “Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams”, International Journal of Engineering Science. 49, pp. 1268-1280, 2011.
[8] Malekzadeh, P., Setoodeh, A.R., Beni, A.A. “Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an elastic medium”, Composite Structures. 93, pp. 2083-2089, 2011.
[9] Zenkour, A.M., Sobhy, M. “Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler–Pasternak elastic substrate medium”, Physica E. 53, pp. 251-259, 2013.
[10] Murmu, T., Sienz, J., Adhikari, S., Arnold, C. “Nonlocal buckling of double-nanoplate-systems under biaxial compression”, Composites: Part B. 44, pp. 84-94, 2013.
[11] Wang, Y-Z., Cui, H-T., Li, F-M., Kishimoto, K., “Thermal buckling of a nanoplate with small-scale effects”, Acta Mechanical. 224, pp. 1299-1307, 2013.
[12] Malekzadeh, P., Alibeygi, A. “Thermal Buckling Analysis of Orthotropic Nanoplates on Nonlinear Elastic Foundation”, Encyclopedia of Thermal Stresses, pp. 4862-4872, 2014.
[13] Mohammadi, M., Farajpour, A., Moradi, A., Ghayour, M. “Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment”, Composites: Part B. 56, pp. 629-637, 2014.
[14] Radic, N., Jeremic, D., Trifkovic, S., Milutinovic, M. “Buckling analysis of double-orthotropic nanoplates embedded in Pasternak elastic medium using nonlocal elasticity theory”, Composites: Part B. 61, pp. 162-171, 2014.
[15] Karlicic, D., Adhikari, S., Murmu, T. “Exact closed-form solution for non-local vibration and biaxial buckling of bonded multi-nanoplate system”, Composites: Part B. 66, pp. 328-339, 2014.
[16] Anjomshoa, A., Shahidi, A.R., Hassani, B., Jomehzadeh, E. “Finite Element Buckling Analysis of Multi-Layered Graphene Sheets on Elastic Substrate Based on Nonlocal Elasticity Theory”, Applied Mathematical Modelling, 38. pp. 1-22, 2014.
[17] Radebe, I.S., Adali, S. “Buckling and sensitivity analysis of nonlocal orthotropic nanoplates with uncertain material properties”, Composites: Part B. 56, pp. 840-846, 2014.
[18] Nguyen, T.K., T. P., Nguyen, B.D., Lee, J., “An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory”, Composite Structures, doi.org/10.1016/j. compstruct.2015. pp. 074, 2015.
[19] Golmakani, M.E., Rezatalab, J. “Non uniform biaxial buckling of orthotropic Nano plates embedded in an elastic medium based on nonlocal Mindlin plate theory”, Composite Structures. 119, pp. 238-250, 2015.
[20] Jamali, M., Shojaee, T., Mohammadi, B. “Uniaxial buckling analysis comparison of nanoplate and nanocomposite plate with central square cut out using domain decomposition method”, Journal of Applied and Computational Mechanics. 2, pp. 230-242, 2016.
[21] Zarei, M. Sh., Hajmohammad, M. H., Nouri, A. “Dynamic buckling of embedded laminated nanocomposite plates based on sinusoidal shear deformation theory”, Journal of Applied and Computational Mechanics. 2, pp. 254-261, 2016.
[22] Malikan, M., Jabbarzadeh, M., Dastjerdi, Sh. “Non-linear Static stability of bi-layer carbon nanosheets resting on an elastic matrix under various types of in-plane shearing loads in thermo-elasticity using nonlocal continuum”, Microsystem Technologies, DOI: 10.1007/s00542, pp. 016-3079-9, 2016.
[23] Mindlin, R. D. “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates”, Transaction of the ASME. 73, pp. 31-38, 1951.
[24] Thai, H-T., Choi, D-H. “A simple first-order shear deformation theory for laminated composite plates”, Composite Structures. 106, pp. 754-763, 2013.
[25] Mindlin, R. D. “Tiersten HF. Effects of couple-stresses in linear elasticity”, Archive for Rational Mechanics and Analysis. 11, pp. 415-48, 1962.
[26] Toupin, R. A., “Elastic materials with couple stresses”, Archive for Rational Mechanics and Analysis. 11, pp. 385-414, 1962.
[27] Koiter, W. T., “Couple stresses in the theory of elasticity”, I and II. Proc K Ned Akad Wet (B. 67, pp. 17-44, 1964.
[28] Cosserat, E., Cosserat, F., “Theory of deformable bodies”, Scientific Library, 6. Paris: A. Herman and Sons, Sorbonne 6, 1909.
[29] Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P., “Couple stress based strain gradient theory for elasticity”, International Journal of Solids and Structures. 39, pp. 2731-43, 2002.
[30] Akgöz, B., Civalek, O., “Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory”, Materials and Design. 42, pp. 164-171, 2012.
[31] Thai, H-T., Thuc, P., Nguyen, T-K., Lee, J., “Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory”, Composite Structures. 123, pp. 337-349, 2015.
[32] Dey, T., Ramachandra, L.S., “Buckling and postbuckling response of sandwich panels under non-uniform mechanical edge loadings”, Composites: Part B. 60, pp. 537-545, 2014.
[33] Leissa, A.W., Kang, Jae-Hoon, “Exact solutions for vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses”, International Journal of Mechanical Sciences. 44, pp. 1925-1945, 2002.
[34] Hwang, I., Seh Lee, J., “Buckling of Orthotropic Plates under Various Inplane Loads”, KSCE Journal of Civil Engineering. 10, pp. 349–356, 2006.
[35] Malikan, M. “Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory”, Applied Mathematical Modelling. 48, pp. 196-207, 2017.
[36] Golmakani, M.E., Sadraee Far, M.N. “Buckling analysis of biaxially compressed double layered graphene sheets with various boundary conditions based on nonlocal elasticity theory”, Microsystem Technologies, DOI 10.1007/s00 .pp,542-016-3053-6, 2016.
[37] Ansari, R., Sahmani, S. “Prediction of biaxial buckling behavior of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations”, Applied Mathematical Modeling. 37, pp. 7338–7351, 2013.