[1] R.P. Shimpi. Refined plate theory and its variants. AIAA J, 40(1) (2002) 137-46.
[2] R.P. Shimpi, H.G. Patel. A two variable refined plate theory for orthotropic plate analysis. Int J Solids Struct, 43(22) (2006) 6783-99.
[3] R.P. Shimpi, H.G. Patel. Free vibrations of plate using two variable refined plate theory. J Sound Vib, 296(4-5) (2006) 979-99.
[4] I. Mechab, H. Ait Atmane, A. Tounsi, H.A. Belhadj, E.A. Adda Bedia, A two variable refined plate theory for bending of functionally graded plates, Acta Mech Sin, 26(6) (2010) 941.
[5] H.H. Abdelaziz, H.A. Atmane, I. Mechab, L. Boumia, A. Tounsi, A.B.E. Abbas, Static Analysis of Functionally Graded Sandwich Plates Using an Efficient and Simple Refined Theory, Chinese Journal of Aeronautics, 24 (2011) 434-448.
[6] M.S.A. Houari, S. Benyoucef, I. Mechab, A. Tounsi, E.A. Adda bedia, Two variable refined plate theory for thermoelastic bending analysis of functionally graded sandwich plates, J Therm Stresses, 34 (2011) 315-34.
[7] A. Hamidi, M. Zidi, M.S.A. Houari, A. Tounsi, A new four variable refined plate theory for bending response of functionally graded sandwich plates under thermomechanical loading, Composites: Part B, (2012), DOI:10.1016/j.compositesb.2012.03.021.
[8] B. Mechab, I. Mechab, S. Benaissa, Static and dynamic analysis of functionally graded plates using Four-variable refined plate theory by the new function, Composites: Part B, 45 (2013) 748-757.
[9] H.T. Thai, S.E. Kim, A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates. Composite Structures, 99 (2013) 172-180.
[10] J.L.Mantari, C Guedes Soares. A trigonometric plate theory with 5-unknowns and stretching effect for advanced composite plates. Composite Structures, 107 (2014) 396-405.
[11] J.L.Mantari, C Guedes Soares. Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells. Composites Part B: Engineering, 56 (2014) 126-136.
[12] J.L.Mantari, C Guedes Soares. Five-unknowns generalized hybrid-type quasi-3D HSDT for advanced composite plates. Applied Mathematical Modelling, 39 (2015) 5598–5615.
[13] A.M. Zenkour, Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate, Applied Mathematical Modelling, 77 (2007) 197-214.
[14] A.M. Zenkour. A simple four-unknown refined theory for bending analysis of functionally graded plates. Applied Mathematical Modelling, 37(20-21) (2013) 9041-9051.
[15] J.L.Mantari, C Guedes Soares. Four-unknown quasi-3D shear deformation theory for advanced composite plates. Composite Structures, 109 (2014) 231-239.
[16] J.L.Mantari, C Guedes Soares. A quasi-3D tangential shear deformation theory with four unknowns for functionally graded plates. Acta Mech, 226 (2015) 625-642.
[17] J.L. Mantari. A simple polynomial quasi-3D HSDT with four unknowns to study FGPs. Reddy's HSDT assessment. Composite Structures. 137 (2016) 114–120.
[18] J.N. Reddy, C.F. Liu. A higher-order shear deformation theory of laminated elastic shells. Int J Eng Sci, 23 (1985) 319–30.
[19] R.A. Chaudhuri. On boundary-discontinuous double Fourier series solution to a system of completely coupled P.D.E.’S. Int J Eng Sci, 27(9) (1989) 1005-22.
[20] R.A. Chaudhuri. On the roles of complementary and admissible boundary constraints in Fourier solutions to boundary-value problems of completely coupled rth order P.D.E.'s. J Sound Vib, 251 (2002) 261–313.
[21] R.A. Chaudhuri, H.R.H. Kabir. Fourier Solution to higher order theory based laminated shell boundary-value problem. AIAA J, 33 (1995) 1681-88.
[22] A.S. Oktem, R.A. Chaudhuri. Levy type analysis of cross-ply plates based on higher-order theory. Compos Struct, 78 (2007) 243-53.
[23] A.S. Oktem, R.A. Chaudhuri. Fourier solution to a thick Levy type clamped plate problem. Compos Struct, 79 (2007) 481-92.
[24] A.S. Oktem, R.A. Chaudhuri. Fourier analysis of thick cross-ply Levy type clamped doubly-curved panels. Compos Struct, 80 (2007) 489-503.
[25] A.S. Oktem, R.A. Chaudhuri. Boundary discontinuous Fourier analysis of thick cross-ply clamped plates. Compos Struct, 82 (2008) 539-48.
[26] A.S. Oktem, R.A. Chaudhuri. Effect of in-plane boundary constraints on the response of thick general (unsymmetric) cross-ply plates. Compos Struct, 83 (2008) 1-12.
[27] S. Srinivas. Three dimensional analysis of some plates and laminates and a study of thickness effects. Ph.D. Thesis, Dept. of Aeronautical Engineering, Indian Institute of Science, Bangalore, India, 1970.
[28] S. Srinivas, A.K. Rao. Bending, vibration and buckling of simply-supported thick orthotropic rectangular plates and laminates. International Journal of Solids and Structures, 6(11) (1970) 1463–1481.
[28] J.N. Reddy. A refined nonlinear theory of plates with transverse shear deformation. International Journal of Solids and Structures, 20(9-10) (1984) 881–896.
[30] E. Carrera, M. Cinefra, P. Nali, MITC technique extended to variable kinematic multilayered plate elements, Composite Structures, 92 (2010) 1888–1895.
[31] A. Ferreira, E. Carrera, M. Cinefra, C. Roque, Radial basis functions collocation for the bending and free vibration analysis of laminated plates using the Reissner-Mixed variational theorem, European Journal of Mechanics - A/Solids, 39 (2012) 104–112.
[32] J. Reddy, A simple higher order theory for laminated composite plates, J Appl Mech, 51 (1984) 745–752.
[33] J. Reddy, W. Chao, A comparison of closed-form and finite-element solutions of thick laminated anisotropic rectangular plates, Nuclear Engineering and Design, 64 (1981) 153–167.
[34] M. Sobhy. Hygrothermal vibration of orthotropic double-layered grapheme sheets embedded in an elastic medium using the two-variable plate theory. Applied Mathematical Modelling, 40 (2016) 85–99.
[35] I. Senjanović, N Vladimir, M Tomić. On new first-order shear deformation plate theories. Mechanics Research Communications, 73 (2016) 31–38.
[36] M. Bouazza, A. Lairedj, N. Benseddiq, S. Khalki. A refined hyperbolic shear deformation theory for thermal buckling analysis of cross-ply laminated plates. Mechanics Research Communications, 73 (2016)117–126.
[37] Y.M. Ghugal, A.S. Sayyad. Flexure of thick orthotropic plates by exponential shear deformation theory. Latin American Journal of Solids and Structures, 10 (2013) 473-490.
[38] Y. M. Ghugal, A. S. Sayyad. Free vibration analysis of thick orthotropic plates using trigonometric shear deformation theory. Latin American Journal of Solids and Structures, 8 (2011) 229-243.
[39] D. Lanc, T.P. Vo, G. Turkalj, J. Lee. Buckling analysis of thin-walled functionally graded sandwich box beams. Thin-Walled Structures, 86 (2015) 148–156.
[40] I. Senjanovic, S. Tomasevic, N. Vladimir. An advanced theory of thin-walled girders with application to ship vibrations. Mar Struct, 22(3) (2009) 387–437.
[41] I. Senjanovic, I. Catipovic, S. Tomasevic. Coupled flexural and torsional vibrations of ship-like girders. Thin-Wall Struct, 45(12) (2007) 1002–21.
[42] A.H. Sofiyev, N. Kuruoglu. Buckling and vibration of shear deformable functionally graded orthotropic cylindrical shells under external pressures. Thin-Walled Structures, 78 (2014) 121-130.
[43] A.H. Sofiyev, The effect of elastic foundations on the nonlinear buckling behavior of axially compressed heterogeneous orthotropic truncated conical shells. Thin-Walled Structures, 80 (2014) 178-191.
[44] H.T. Thai, D.H. Choi. A refined plate theory for functionally graded plates resting on elastic foundation. Composites Science and Technology, 71 (2016) 1850-1858.
[45] H. Asadi, A.H. Akbarzadeh, Q. Wang. Nonlinear thermo-inertial instability of functionally graded shape memory alloy sandwich plates. Composite Structures, 120(1) (2015) 496-508.
[46] H. Asadi, M. Eynbeygi, Q. Wang. Nonlinear thermal stability of geometrically imperfect shape memory alloy hybrid laminated composite plates. Smart Materials and Structures, 23(7) (2014) 075012.
[47] S.F. Nikrad, H. Asadi. Thermal postbuckling analysis of temperature dependent delaminated composite plates. Thin-Walled Structures, 97 (2015) 296-307.
[48] S.F. Nikrad, H. Asadi, A.H. Akbarzadeh, ZT Chen. On thermal instability of delaminated composite plates. Composite Structures, 132(1) (2015) 1149-1159.
[49] T.R. Mahapatra, V.R. Kar, S.K. Panda, K. Mehar. Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading. Journal of Thermal Stresses, 40(9) (2017) 1184-1199.
[50] T.R. Mahapatra, V.R. Kar, S.K. Panda. Large Amplitude Free Vibration Analysis of Laminated Composite Spherical Panel under Hygrothermal Environment. International Journal of Structural Stability and Dynamics, 16(3) (2016) 1450105.
[51] T.R. Mahapatra, S.K. Panda, V.R. Kar. Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel, International Journal of Mechanics and Materials in Design, 12(2) (2015) 942-959.
[52] J.L. Mantari, E.V. Granados, M.A. Hinostroza, C.G. Soares. Modelling advanced composite plates resting on elastic foundation by using a quasi-3D hybrid type HSDT. Composite Structures, 118 (2014) 455-471.
[53] J.L. Mantari. Computational Development of a 4-Unknowns Trigonometric Quasi-3D Shear Deformation Theory to Study Advanced Sandwich Plates and Shells. International Journal of Applied Mechanics, 8(4) (2016) 1650049.
[54] J.L. Mantari. General recommendations to develop 4-unknowns quasi-3D HSDTs to study FGMs. Aerospace Science and Technology, 58 (2016) 559-570.