[1] Turkyilmazoglu, M., Analytical solutions to mixed convection MHD fluid flow induced by a nonlinearly deforming permeable surface, Communications in Nonlinear Science and Numerical Simulation 63 (2018) 373–379.
[2] Khan, W.A., Alshomrani, A.S., Alzahrani, A.K., Khan, M., Irfan, M., Impact of autocatalysis chemical reaction on nonlinear radiative heat transfer of unsteady three-dimensional Eyring–Powell magneto-nanofluid flow, Pramana 91(63) (2018) 1-9.
[3] Farooq, M., Khan, M.I., Waqas, M., Hayat, T., Alsaedi, A., Khan, M.I., MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects, J. Mol. Liq. 221 (2016) 1097-1103.
[4] Hayat, T., Khan, M.I., Waqas, M., Alsaedi, A., Yasmeen, T., Diffusion of chemically reactive species in third grade flow over an exponentially stretching sheet considering magnetic field effects, Chinese J. Chem. Eng. 25(3) (2017) 257-263.
[5] Azeem Khan, W., Khan, M., Malik, R., Three-dimensional flow of an Oldroyd-B nanofluid towards stretching surface with heat generation/absorption, Plos One 9(8) (2014) 105107.
[6] Sohail, A., Shah, S.I.A., Khan, W.A., Khan, M. Thermally radiative convective flow of magnetic nanomaterial: A revised model, Results in Physics 7 (2017) 2439–2444.
[7] Athirah, N., Zin, M., Khan, I., Shafie, S., Saleh, A., Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium, Results in Physics 7 (2017) 288–309.
[8] Hayat, T., Waqas, M., Khan, M.I., Alsaedi, A., Impacts of constructive and destructive chemical reactions in magnetohydrodynamic (MHD) flow of Jeffrey liquid due to nonlinear radially stretched surface, J. Mol. Liq. 225 (2017) 302–310.
[9] Zeeshan, A., Majeed, A., Heat transfer analysis of Jeffery fluid flow over a stretching sheet with suction/injection and magnetic dipole effect, Alexandria Eng. J. 55(3) (2016) 2171–2181.
[10] Turkyilmazoglu, M., Magnetic Field and Slip Effects on the Flow and Heat Transfer of Stagnation Point Jeffrey Fluid over Deformable Surfaces, Z. Naturforsch. A 71(6) (2016) 549-556.
[11] Harish Babu, D., Satya Narayana, P.V., Joule heating effects on MHD mixed convection of a Jeffrey fluid over a stretching sheet with power law heat flux:a numerical study, J. Mag. Magn. Mat. 412 (2016) 185-193.
[12] Satya Narayana, P.V., Harish Babu, D., Numerical study of MHD heat and mass transfer Jeffrey fluid over a stretching sheet with chemical reaction and radiation, J. Taiwan Inst. of Chem. Engg. 59 (2016) 18-25.
[13] Blasius, H., Grenzschichten in Flussigkeitenmitkleiner reibun, Zeitschrift für angewandte Mathematik und Physik 56 (1908) 1–37.
[14] Sakiadis, B.C., Boundary-layer behaviour on continuous solid surfaces, boundary layer equations for 2-dimensional and axisymmetric flow, Am. Inst. Chem. Eng. J. 7 (1961) 26–28.
[15] Afzal, N., Badaruddin, A., Elgarvi, A.A., Momentum and transport on a continuous flat surface moving in a parallel stream, Int. J. Heat Mass Transfer 36 (1993) 3399–3403.
[16] Bataller, R. C., Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition, Appl. Math. Comput. 206(2) (2008) 832–840.
[17] Olanrewaju, P.O., Adeeyo, O.A., Agboola, O.O., Bishop, S.A., Buoyancy and thermal radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition, J. Energy, Heat & Mass Transf. 33(3) (2011) 211-232.
[18] Hady, F.M., Eid, M.R., Ahmed, M.A., The Blasius and Sakiadis flow in a nanofluid through a porous medium in the presence of thermal radiation under a convective surface boundary condition, Int. J. Eng. Innov. Technol. 3(3) (2013) 225–234.
[19] Hayat, T., Iqbal, Z., Mustafa, M., Obaidat, S., Flow and heat transfer of Jeffrey fluid over a continuously moving surface with a parallel free stream, J. Heat Transf. 134(1) (2012) 11701-7.
[20] Jalil, M., Asghar, S., Imran, S.M., Self similar solutions for the flow and heat transfer of Powell-Eyring fluid over a moving surface in a parallel free stream, Int. J. Heat Mass Transf. 65 (2013) 73–79.
[21] Anjali Devi, S.P., Suriyakumar, P., Effect of magnetic field on Blasius and Sakiadis flow of nanofluids past an inclined plate, J. Taibah Univ. Sci.11(6) (2017) 1275-1288.
[22] Mustafa, M., Khan, J.A., Hayat, T., Alsaedi, A., Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions, AIP Adv. 5(2) (2015) 1-9.
[23] Ramesh, G.K., Gireesha, B.J., Gorla, R.S.R., Study on Sakiadis and Blasius flows of Williamson fluid with convective boundary condition, Nonlinear Eng. 4(4) (2015) 215–221.
[24] Pantokratoras, A., Non-similar Blasius and Sakiadis flow of a non-Newtonian Carreau fluid, J. Taiwan Inst. Chem. Eng. 56 (2015) 1–5.
[25] Sekhar, K.R., Reddy, G.V., Radiative Magnetohydro-dynamic Sakiadis and Blasius Flow in a Suspension of Cu-Nanofluid with Non-Uniform Heat Source/Sink, Journal of Nanofluids 6(6) (2017) 1159-1165.
[26] Harish Babu, D., Venkateswarlu, B., Satya Narayana, P.V., Soret and Dufour effects on MHD radiative heat and mass transfer flow of a Jeffrey fluid over a stretching sheet, Frontiers in Heat and Mass Transfer 8 (2017) 1-5.
[27] Khan, W.A., Irfan, M., Khan, M., Alshomrani, A.S., Alzahrani, A.K., Alghamdi, M.S., Impact of chemical processes on magneto nanoparticle for the generalized Burgers fluid, Journal of Molecular Liquids 234 (2017) 201–208.
[28] Turkyilmazoglu, M. Algebraic solutions of flow and heat for some nanofluids over deformable and permeable surfaces, International Journal of Numerical Methods for Heat & Fluid Flow 27(10) (2017) 2259–2267
[29] Khan, W.A., Haq, I., Ali, M., Shahzad, M., Khan, M., Irfan, M. Significance of static–moving wedge for unsteady Falkner–Skan forced convective flow of MHD cross fluid, Journal of the Brazilian Society of Mechanical Sciences and Engineering 40(17) (2018) 1-12.
[30] Roberts, L., On the Melting of a Semi-Infinite Body of Ice Placed in a Hot Stream of Air, J. Fluid Mech. 4 (1958) 505–528.
[31] Epstein, M., Cho, D.H., Melting heat transfer in steady laminar flow over a flat plate, J. Heat Transfer 98 (1976) 531–533.
[32] Ishak, R. Nazar, N. Bachok, and I. Pop, Melting heat transfer in steady laminar flow over a moving surface, Heat Mass Transf. und Stoffuebertragung 46(4) (2010) 463–468.
[33] Das, K., Radiation and melting effects on MHD boundary layer flow over a moving surface, Ain Shams Eng. J. 5(4) (2014) 1207–1214.
[34] Azizah, N., Ishak, A., Pop, I., Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet in a micropolar fluid, Comput. Fluids 47(1) (2011) 16–21.
[35] Mabood, F., Abdel-Rahman, R.G., Lorenzini, G., Effect of melting heat transfer and thermal radiation on Casson fluid flow in porous medium over moving surface with magnetohydrodynamics, J. Eng. Thermophys. 25(4) (2016) 536–547.
[36] Khan, W.A., Khan, M., Irfan, M., Alshomrani, A.S., Impact of melting heat transfer and nonlinear radiative heat flux mechanisms for the generalized Burgers fluids, Results in Physics 7 (2017) 4025–4032.
[37] Hashim, K.M., Saleh, A.A., Characteristics of melting heat transfer during flow of Carreau fluid induced by a stretching cylinder, Eur. Phys. J. Soft. Matter. 40(1) (2017) 1-8.
[38] Sheikholeslami, M., Rokni, H.B., Effect of melting heat transfer on nanofluid flow in existence of magnetic field considering Buongiorno Model, Chinese J. of Phy. 55(4) (2017) 1115-1126.
[39] Arifuzzaman, M., Khan, M.S., Mehedi, M.F.U., Rana, B.M.J., Ahmmed, S.F., Chemically reactive and naturally convective high speed MHD fluid flow through an oscillatory vertical porous plate with heat and radiation absorption effect, Eng. Sci. and Tech.,Int. J. 21(2) (2018) 215-228.
[40] Cortell, R., Radiation Effects for the Blasius and Sakiadis flows with convective surface boundary conditions, Appl. Math. Comput. 206 (2010) 832–840.
[41] Hayat, T., Abbas, Z., Pop, I., Momentum and heat transfer over a continuously moving surface with a parallel free stream in a viscoelastic fluid, Numer. Methods Partial Differ. Equ. 26 (2010) 305–319.
[42] Bianchi, M.V.A., Viskanta, R., Momentum and heat transfer on a continuous flat surface moving in parallel counter flow free stream, Wärme- und Stoffübertr 29 (1993) 89–94.
[43] Turkyilmazoglu, M., Determination of the correct range of physical parameters in the approximate analytical solutions of nonlinear equations using the Adomian Decomposition method, Mediterranean Journal of Mathematics 13(6) (2016) 4019-4037.