Vibration and Buckling Analysis of Functionally Graded Flexoelectric Smart Beam

Document Type : Research Paper


Mechanical Engineering Department, Faculty of Engineering, Shahrekord University, Shahrekord, Iran


In this paper, the buckling and vibration behaviour of functionally graded flexoelectric nanobeam is examined. The vibration and buckling formulations of functionally graded nanobeam are developed by using a new theory that’s presented exclusively for flexoelecteric nano-materials. So by considering Von-Karman strain and forming enthalpy equation based on displacement, polarization and electric potential, electromechanical coupling equations are developed base on Hamilton’ principle. By considering boundary condition of simply support and clamped-clamped and also Euler-Bernoulli beam model, pre-buckling, buckling and the vibration behavior of functionally graded nanobeam affected by flexoelectric will be investigated.


Main Subjects

[1] Newell, W.E., Miniaturization of tuning forks, Science, 161(3848), 1968, 1320-6.
[2] Craighead, H.G., Nanoelectromechanical systems. Science, 290(5496), 2000, 1532-1536.
[3] Holterman, J., Groen, P., An Introduction to piezoelectric materials and applications, Stichting Applied Piezo, 2013.
[4] Ye, Z., Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications, Woodhead Publishing, 2008.
[5] Cady, W., Piezoelectricity: an introduction to the theory and applications of electromechanical phenomena in crystals, McGraw-Hill; 1st edition, 1946.
[6] Maranganti, R., Sharma, N.D., Sharma, P., Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B., 74(1), 2006, 14110.
[7] Majdoub, M.S., Sharma, P., Cagin, T., Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B., 77(12), 20008, 125424.
[8] Sharma, N.D., Maranganti, R., Sharma, P., On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J. Mech. Phys. Solids, 55(11), 2007, 2328-2350.
[9] Sharma, N.D., Landis, C.M., Sharma, P., Piezoelectric thin-film superlattices without using piezoelectric materials. J. Appl. Phys., 108(2), 2010, 24304.
[10] Catalan, G., Sinnamon, L.J., Gregg, J.M., The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films. J. Phys. Condens. Matter., 16(13), 2004, 2253-2264.
[11] Lee, D., Yoon, A., Jang, S.Y., et al. Giant Flexoelectric Effect in Ferroelectric Epitaxial Thin Films. Phys. Rev. Lett., 107(5), 2011, 57602.
[12] Zhou, H., Hong, J., Zhang, Y., et al. Flexoelectricity induced increase of critical thickness in epitaxial ferroelectric thin films. Physica B: Condensed Matter, 407(17), 2012, 3377-3381.
[13] Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Blinc, R., Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B., 79(16), 2009, 165433.
[14] Craciunescu, C., Wuttig, M., New Ferromagnetic and Functionally Graded Shape Memory Alloys. J. Opt. Adv. Matter., 5(39), 2003, 139-146.
[15] Fu, Y., Du, H., Zhang, S., Functionally graded TiN/TiNi shape memory alloy films. Mater. Lett., 57(20), 2003, 2995-2999.
[16] Fu, Y., Du, H., Huang, W., Zhang, S., Hu, M., TiNi-based thin films in MEMS applications: a review. Sens. Actuators A, 112(2-3), 2004, 395-408.
[17] Lee, Z., Ophus, C., Fischer, L.M., et al. Metallic NEMS components fabricated from nanocomposite Al–Mo films. Nanotechnology, 17(12), 2006, 3063-3070.
[18] Witvrouw, A., Mehta, A., The Use of Functionally Graded Poly-SiGe Layers for MEMS Applications. Mater. Sci. Forum, 492-493, 2005, 255-260.
[19] Ma, W., Cross, L.E., Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics. Appl. Phys. Lett., 78(19), 2001, 2920-2921.
[20] Ma, W., Cross, L.E., Large flexoelectric polarization in ceramic lead magnesium niobate. Appl. Phys. Lett., 79(26), 2001, 4420-4422.
[21] Ma, W., Cross, L.E., Flexoelectric effect in ceramic lead zirconate titanate. Appl. Phys. Lett., 86(7), 2005, 72905.
[22] Ma, W., Cross, L.E., Flexoelectricity of barium titanate. Appl. Phys. Lett., 88(23), 2006, 232902.
[23] Maranganti, R., Sharma, P., Atomistic determination of flexoelectric properties of crystalline dielectrics. Phys. Rev. B., 80(5), 2009, 54109.
[24] Hong, J., Catalan, G., Scott, J.F., Artacho, E., The flexoelectricity of barium and strontium titanates from first principles. J. Phys. Condens. Matter., 22(11), 2010, 112201.
[25] Ponomareva, I., Tagantsev, A.K., Bellaiche, L., Finite-temperature flexoelectricity in ferroelectric thin films from first principles. Phys. Rev. B., 85(10), 2012, 104101.
[26] Kheibari, F., Beni, Y.T., Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model. Mater., Des., 114, 2017, 572-583.
[27] Mehralian, F., Beni, Y.T., Ansari, R., On the size dependent buckling of anisotropic piezoelectric cylindrical shells under combined axial compression and lateral pressure. Int. J. Mech. Sci., 119, 2016, 155-169.
[28] Mehralian, F., Beni, Y.T., Ansari, R., Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell. Compos. Struct., 152, 2016, 45-61.
[29] Yue, Y.M., Xu, K.Y., Chen, T., A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects. Compos. Struct., 136, 2016, 278-286.
[30] Kong, S., Zhou, S., Nie, Z., Wang, K., The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci., 46(5), 2008, 427-437.
[31] Sadeghi, H., Baghani, M., Naghdabadi, R., Strain gradient elasticity solution for functionally graded micro-cylinders. Int. J. Eng. Sci., 50(1), 2012, 22-30.
[32] Yan, Z., Jiang, L., Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity. J. Phys. D. Appl. Phys., 46(35), 2013, 355502.
[33] Liang, X., Hu, S., Shen, S., Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity. Smart. Mater. Struct., 24(10), 2015, 105012.
[34] Yan, Z., Jiang, L., Effect of flexoelectricity on the electroelastic fields of a hollow piezoelectric nanocylinder. Smart. Mater. Struct., 24(6), 2015, 65003.
[35] Kundalwal, S.I., Megui, S.A., Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells. Acta Mech., 226(6), 2015, 2035-2052.
[36] Kundalwal, S.I., Suresh, Kumar, R., Ray, M.C., Smart damping of laminated fuzzy fiber reinforced composite shells using 1–3 piezoelectric composites. Smart. Mater. Struct., 22(10), 2013, 105001.
[37] Suresh Kumar, R., Kundalwal, S.I., Ray, M.C., Control of large amplitude vibrations of doubly curved sandwich shells composed of fuzzy fiber reinforced composite facings. Aerosp. Sci. Technol., 70, 2017, 10-28.
[38] Kundalwal, S.I., Shingare, K.B., Rathi, A., Effect of flexoelectricity on the electromechanical response of graphene nanocomposite beam, Int. J. Mech. Mater. Des., 2018,
[39] Kundalwal, S.I., Megui, S.A., Weng, G.J., Strain gradient polarization in graphene. Carbon, 117, 2017, 462-472.
[40] Chu, L., Dui, G., Ju, C., Flexoelectric effect on the bending and vibration responses of functionally graded piezoelectric nanobeams based on general modified strain gradient theory. Compos. Struct., 186, 2018, 39-49.
[41] Wei, G., Shouwen, Y., Ganyun, H., Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnology, 17, 2016, 1118-1122.
[42] Darrall, T.B., Hadjesfandiari, A.R., Dargush G.F., Size-dependent piezoelectricity: A 2D finite element formulation for electric field-mean curvature coupling in dielectrics. Eur. J. Mech. A. Solids, 49, 2015, 308-320.
[43] Shijie, Z., Xie, Z., Wang, H., Theoretical and finite element modeling of piezoelectric nanobeams with surface and flexoelectricity effects. Mech. Adv. Mater. Struct., 2018,
[44] Soleimani, I., Beni Y.T., Vibration analysis of nanotubes based on two-node size dependent axisymmetric shell element, Arch. Civ. Mech. Engg., 18, 2018, 1345–1358.
[45] Mohtashami, M., Beni Y.T., Size-Dependent Buckling and Vibrations of Piezoelectric Nanobeam with Finite Element Method. Iran. J. Sci. Tech. Trans. Civil Engg., 2018,
[46] Moura, A.G., Erturk, A., Electroelastodynamics of flexoelectric energy conversion and harvesting in elastic dielectrics. J. Appl. Phys., 121, 2017, 064110.
[47] Liang, X., Zhang, R., Hu, S., Shen, S., Flexoelectric energy harvesters based on Timoshenko laminated beam theory. J. Intell. Mater. Syst. Struct., 28(15), 2017, 2064-2073.
[48] Liang, X., Hu, S., Shen, S., Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity. Smart. Mater. Struct., 26, 2017, 035050.
[49] Deng, Q., Kammoun, M., Erturk, A., Sharma, P., Nanoscale flexoelectric energy harvesting. Int. J. Solids Struct., 51, 2014, 3218-3225.
[50] Wang, K.F., Wang, B.L., Non-linear flexoelectricity in energy harvesting. Int. J. Eng. Sci., 116, 2017, 88-103.
[51] Hu, S., Shen, S., Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Sci. China Phys. Mech. Astron., 53(8), 2010, 1497-1504.
[52] Shen, S., Hu, S., A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids, 58(5), 2010, 665-677.
[53] Li, A., Zhou, S., Qi, L., Chen, X., A reformulated flexoelectric theory for isotropic dielectrics. J. Phys. D. Appl. Phys., 48(46), 2015, 465502.
[54] Toupin, R.A., The Elastic Dielectric. J. Ration. Mech. Anal., 5, 1956, 849-915.
[55] Kuang, Z-.B., Variational principles for generalized dynamical theory of thermopiezoelectricity. Acta Mech., 203(1-2), 2009, 1-11.
[56] Beni, Y.T., Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J. Intell. Mater. Syst. Struct., 27(16), 2016, 2199-2215.
[57] Omidian, R., Beni, Y.T., Mehralian, F., Analysis of size-dependent smart flexoelectric nanobeams. Eur. Phys. J. Plus., 132(11), 2017, 481.
[58] Eltaher, M.A., Emam, S.A., Mahmoud, F.F., Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput., 218(14), 2012, 7406-7420.
[59] Eltaher, M.A., Emam, S.A., Mahmoud, F.F., Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct., 96, 2013, 82-88.