[1] Biot, M., Thermoelasticity and Irreversible Thermodynamics, J. Appl. Phys., 27, 1956, 240–253.
[2] Hetnarski, R.B., Ignaczak, J., Generalized Thermoelasticity, J. Thermal Stresses, 22, 1999, 451–470.
[3] Hetnarski, R.B. and Ignaczak, J., Nonclassical Dynamical Thermoelasticity, Inter. J. Solids Struct., 37, 2000, 215–224.
[4] Chandrasekharaiah, D.S., Hyperbolic Thermoelasticity, A Review of Recent Literature, Appl. Mech. Rev., 51, 1998, 705–729.
[5] Lord, H., Shulman, Y., A Generalized Dynamical Theory of Thermoelasticity, J. Mech. Phys. Solids, 15, 1967, 299.
[6] Green, A.E., Lindsay, K.A., Thermoelasticity, J. Elasticity, 2, 1972, 1–7.
[7] Ignaczak, J., Generalized Thermoelasticity and its Applications, in R. B. Hetnarski (ed.), Mechanical and Mathematical Methods, Thermal Stresses III, North Holland, 1989.
[8] Tzou, D.Y., A Unified Field Approach for Heat Conduction from Macro- to Micro-Scales, ASME J. Heat Transfer, 117, 1995, 8–16.
[9] Tzou, D.Y., The Generalized Lagging Response in Small-Scale and High-Rate Heating, Int. J. Heat Mass Transfer, 38, 1995, 3231–3240.
[10] Tzou, D.Y., Experimental Support for the Lagging Behavior in Heat Propagation, AIAA J. Thermophys. Heat Transfer, 9, 1995, 686–693.
[11] Chandrasekharaiah, D.S., Hyperbolic Thermoelasticity: A Review of Recent Literature, Appl. Mech. Rev., 51, 1998, 705–729.
[12] Quintanilla, R., Racke, R., A Note on Stability of Dual Phase-Lag Heat Conduction, Int. J. Heat. Mass Transf., 49, 2006, 1209–1213.
[13] Quintanilla, R., Racke, R., Qualitative Aspects in Dual Phase-Lag Heat Conduction, Proc. Royal Soc. A., 463, 659–674, 2007.
[14] Zenkour, A.M., Abouelregal, A.E., Effects of Phase-Lags in a Thermoviscoelastic Orthotropic Continuum with a Cylindrical Hole and Variable Thermal Conductivity, Arch. Mech., 67, 2015, 457–475.
[15] Zenkour, A.M., Mashat, D.S., Abouelregal, A.E., The Effect of Dual-Phase-Lag Model on Reflection of Thermoelastic Waves in a Solid Half Space with Variable Material Properties, Acta Mech. Solida Sinica, 26, 2013, 659–670.
[16] Prasad, R., Kumar, R., Mukhopadhyay, S., Propagation of Harmonic Plane Waves under Thermoelasticity with Dual-Phase-Lags, Int. J. Eng. Sci., 48(12), 2010, 2028–2043.
[17] Borgmeyer, K., Quintanilla, R., Racke, R., Phase-Lag Heat Condition: Decay Rates for Limit Problems and Well-Posedness, J. Evol. Equ., 14, 2014, 863-884.
[18] Liu, Z., Quintanilla, R., Time Decay in Dual-Phase-Lag Thermoelasticity: Critical Case, Comm. Pure Appl. Analy., 17(1), 2018, 177-190.
[19] Guo, F.L., Wang, G.Q., Rogerson, G.A., Analysis of Thermoelastic Damping in Micro- and Nanomechanical Resonators based on Dual-Phase-Lag Generalized Thermoelasticity Theory, Int. J. Eng. Sci., 60, 2012, 59-65.
[20] Abbas, I.A., A Dual Phase Lag Model on Thermoelastic Interaction in an Infinite Fiber-Reinforced Anisotropic Medium with a Circular Hole, Mech. Based Des. Struct. Machines, 43, 2015, 501–513.
[21] Green, A.E., Naghdi, P.M., A Re-examination of the Basic Postulates of Thermomechanics, Proc. Roy. Soc. Lond. A, 432, 1991, 171–194.
[22] Green, A.E., Naghdi, P.M., On Undamped Heat Waves in an Elastic Solid, J. Therm. Stress., 15, 1992, 253–264.
[23] Green, A.E., Naghdi, P.M., Thermoelasticity without Energy Dissipation, J. Elasticity, 31, 1993, 189–208.
[24] Chandrasekharaiah, D.S., A Note on the Uniqueness of Solution in the Linear Theory of Thermoelasticity without Energy Dissipation, J. Elasticity, 43(3), 1996, 279–283.
[25] Chandrasekharaiah, D.S., A Uniqueness Theorem in the Theory of Thermoelasticity without Energy Dissipation, J. Therm. Stresses, 19(3), 1996, 267–272.
[26] Choudhuri, S.R., On a Thermoelastic Three-Phase-Lag Model, J. Therm. Stresses, 30(3), 2007, 231–238.
[27] El-Karamany, A.S., Ezzat, M.A., On the Phase-Lag Green-Naghdi Thermoelasticity Theories, Appl. Math. Model., 40, 2016, 5643–5659.
[28] Ciarletta, M.A., Theory of Micropolar Thermoelasticity without Energy Dissipation, J. Therm. Stresses, 22, 2009, 581–594.
[29] Chiriţă, S., Ciarletta, M., Reciprocal and Variational Principles in Linear Thermoelasticity without Energy Dissipation, Mech. Res. Commun., 37, 2010, 271–275.
[30] Ieşan, D., On a Theory of Thermoelasticity without Energy Dissipation for Solids with Microtemperatures, Z. Angew. Math. Mech., 98(6), 2018, 870-885.
[31] Quintanilla, R., On Existence in Thermoelasticity without Energy Dissipation, J. Therm. Stresses, 25, 2002, 195-202.
[32] Allam, M.N., Elsibai K.A., Abouelregal, A.E., Electromagneto-Thermoelastic Problem in a Thick Plate using Green and Naghdi Theory, Int. J. Eng. Sci., 47, 2009, 680-690.
[33] Allam, M.N., Elsibai K.A., Abouelregal, A.E., Electromagneto-Thermoelastic Plane Waves without Energy Dissipation for an Infinitely Long Annular Cylinder in a Harmonic Field, J. Therm. Stresses, 30, 2007,195–210.
[34] Marin, M., Baleanu, D., On Vibrations in Thermoelasticity without Energy Dissipation for Micropolar Bodies, Bound. Val. Prob., 2016, 2016, 111.
[35] Khedr M.El., Khader, S.A., A Problem in Thermoelasticity with and without Energy Dissipation, J. Phys. Math., 8(3), 2017, 1000243.
[36] Marin, M., Cesaro means in thermoelasticity of dipolar bodies, Acta Mech., 122(1-4), 1997, 155-168.
[37] Hassan, M., Marin, M., Ellahi, R., Alamri, S.Z., Exploration of Convective Heat Transfer and Flow Characteristics Synthesis by Cu–Ag/Water Hybrid-Nanofluids, Heat Transfer Research, 49(18), 2018, 1837-1848.
[38] Chiriţă, S., Ciarletta, M., Tibullo, V., On the Wave Propagation in the Time Differential Dual-Phase-Lag Thermoelastic Model, Proc. Royal Soc. A, 471, 2015, 20150400.
[39] Chiriţă, S., High-Order Effects of Thermal Lagging in Deformable Conductors, Int. J. Heat Mass Trans., 127, 2018, 965–974.
[40] Cattaneo, C., A Form of Heat Conduction Equation which Eliminates the Paradox of Instantaneous Propagation, Comp. Rend., 247, 1958, 431-433.
[41] Vernotte, P., Les paradoxes de la Theorie Continue de l’Equation de la Chaleur, Comp. Rend., 246, 1958, 3154-3155.
[42] Chiriţă, S., On the Time Differential Dual-Phase-Lag Thermoelastic Model, Meccanica, 52, 2017, 349–361.
[43] Zenkour, A.M., Abouelregal, A.E., Alnefaie, K.A., Abu-Hamdeh, N.H., Seebeck Effect on a Magneto-Thermoelastic Long Solid Cylinder with Temperature-Dependent Thermal Conductivity, European J. Pure Appl. Math., 10(4), 2017, 786-808.
[44] Chandrasekharaiah, D.S., Srinath, K.S., Thermoelastic Interactions without Energy Dissipation due to a Point Heat Source, J. Elasticity, 50, 1998, 97–108.
[45] Morse, P., Feshbach, H., Methods of Theoretical Physics, 1^{st} ed., McGraw-Hill, New York, 1953.
[46] Honig, G., Hirdes, U., A Method for the Numerical Inversion of the Laplace Transform, J. Comput. Appl. Math., 10, 1984, 113–132.
[47] Mashat, D.S., Zenkour, A.M., Abouelregal, A.E., Fractional Order Thermoelasticity Theory for a Half-Space Subjected to an Axisymmetric Heat Distribution, Mech. Adv. Mater. Struct., 22(11), 2015, 925–932.
[48] Zenkour, A.M. and Abouelregal, A.E., State-Space Approach for an Infinite Medium with a Spherical Cavity Based Upon Two-Temperature Generalized Thermoelasticity Theory and Fractional Heat Conduction, Zeitsch. Angewandte Math. Phys., 65(1), 2014, 149–164.
[49] Quintanilla, R., Exponential Stability in the Dual-Phase-Lag Heat Conduction Theory, J. Non-Equil. Thermod., 27, 2002, 217–227.
[50] El-Karamany, A.S., Ezzat, M.A., On the Phase-Lag Green-Naghdi Thermoelasticity Theories, Appl Math. Model., 40, 2016, 5643–5659.
[51] Ezzat, M.A., El-Karamany, A.S., Fractional Order Heat conduction Law in Magneto-Thermoelasticity Involving Two Temperatures, Zeitsch. Angewandte Math. Phys., 62, 2011, 937–952.
[52] Ezzat, M.A., El-Karamany, A.S., Theory of Fractional Order in Electro-thermoelasticity, Eur. J. Mech. A/Solid, 30, 2011, 491–500.
[53] Ezzat, M.A., Fayik, M., Fractional Order Theory of Thermoelastic Diffusion, J. Therm. Stresses, 34, 2013, 851–872.
[54] Xu, H.Y., Jiang, X.Y., Time Fractional Dual-Phase-Lag Heat Conduction Equation, Chin. Phys. B, 24(3), 2015, 034401.