Using the Finite Element Analysis Method to Study the 3-point Bending Test for the Characterization of the Adherence

Document Type : Research Paper

Authors

1 CIRIMAT, Université de Toulouse, CNRS, INP-ENSIACET, 4 allée Émile Monso 31 030, Toulouse, France

2 IS2M, Université de Haute Alsace, 15 rue Jean Starcky 68 057, Mulhouse, France

3 CETIM, 7 rue de la Presse, 42 952 Saint-Étienne, France

Abstract

An elastic finite element analysis was conducted to evaluate the stress distribution in the initiation zone of the adhesive rupture during the 3-point bending test. This test is used to measure the adherence between a polyepoxy adhesive and aluminum alloy with different surface treatments. The purpose is to compare, in the high stress concentration areas, the stress fields calculated using finite element method with the experimental data obtained in different configurations. Focusing on the load level at crack initiation, on the localization and the size of adhesive failure initiation, a local criterion for adhesive fracture is proposed based on the value of the stress normal to the interface.

Keywords

Main Subjects

[1] da Silva, L.F.M., Öchsner, A., Adams, R.D. (Eds), Handbook of Adhesion Technology, Springer Berlin Heidelberg, 2011.
[2] He, X., A review of finite element analysis of adhesively bonded joints. Int. J. Adhes. Adhes. 31(4), 2011, 248-264.
[3] da Silva, L.F.M., Campilho RDSG. (Eds) Advances in Numerical Modeling of Adhesive Joints, New York, Springer, 2012.
[4] Cognard, J.Y., Créac’hcadec, R., Sohier, L., Davies, P., Analysis of the nonlinear behavior of adhesives in bonded assemblies-Comparison of TAST and Arcan tests. Int. J. Adhes. Adhes. 28(8), 2008, 393-404.
[5] Garcia, J.A., Chiminelli, A., Garcia, B., Lizaranzu, M., Jiminez, M.A., Characterization and material model definition of toughened adhesives for finite element analysis. Int. J. Adhes. Adhes. 31(4), 2011, 182-192.
[6] Leffle, K., Alfredsson, K.S., Stigh, U., Shear behavior of adhesive layers. Int. J. Solids Struct. 44(2), 2007, 530-545.
[7] Fessel, G., Broughton, J.G., Fellows, N.A., Durodola, J.F., Hutchinson, A.R., Evaluation of different lap-shear joint geometries for automotive applications. Int. J. Adhes. Adhes. 27(7), 2007, 574-583.
[8] Mackerle, J., Finite element analysis and simulation of adhesive bonding, soldering and brazing an addendum: a bibliography (1996 2002). Model. Simul. Mater. Sci. Eng. 10(6), 2002, 637-671.
[9] Tvergaard, V., Hutchinson, J.W., The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J. Mech. Phys. Solids. 40(6), 1992, 1377-1397.
[10] Needleman, A., An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids. 38(3), 1990, 289-324.
[11] Mohammed, I.K., Charalambides, M.N., Kinloch AJ. Modeling the interfacial peeling of pressure-sensitive adhesives. J. Nonnewton. Fluid Mech. 222, 2014, 141-150.
[12] Jousset, P., Rachik, M., Implementation, identification and validation of an elasto-plastic-damage model for the finite element simulation of structural bonded joints. Int. J. Adhes. Adhes. 50, 2014, 107-118.
[13] Neumayer, J., Koerber, H., Hinterhölzl, R., An explicit cohesive element combining cohesive failure of the adhesive and delamination failure in composite bonded joints. Compos. Struct. 146, 2016, 75-83.
[14] Campilho, R.D.S.G., de Moura, M.F.S.F., Domingues, J.J.M.S., Using a cohesive damage model to predict the tensile behavior of CFRP single-strap repairs. Int. J. Solids Struct. 45(5), 2008, 1497-1512.
[15] de Moura MFSF. Numerical simulation of the ENF test for the mode-II fracture characterization of bonded joints. J. Adhes. Sci. Technol. 20(1), 2006, 37-52.
[16] Bedon, C., Machalická, K., Eliášová, M., Vokáč, M., Numerical Modelling of Adhesive Connections Including Cohesive Damage. Challenging Glass Conference Proceedings, 6, 2018, 309-320.
[17] Roche, A.A., Dole, P., Bouzziri, M., Measurement of the pratical adhesion of paint coatings to metallic sheets by the pull-off and three-point flexure tests. J. Adhes. Sci. Technol. 8(6), 1994, 587-609.
[18] Roche, A.A., Behme, A.K., Solomon, J.S., A three-point flexure test configuration for improved sensitivity to metal/ adhesive interfacial phenomena. Int. J. Adhes. Adhes. 2(4), 1982, 249-254.
[19] Bouchet, J., Roche, A.A., Jacquelin, E., The role of the polymer / metal interphase and its residual stresses in the critical strain energy release rate ( Gc ) determined using a three-point flexure test. J. Adhes. Sci. Technol. 15(3), 2001, 345-369.
[20] Golaz, B., Michaud, V., Lavanchy, S., Månson, J.A.E., Design and durability of titanium adhesive joints for marine applications. Int. J. Adhes. Adhes. 45, 2013, 150-157.
[21] Sauvage, J.B., Aufray, M., Jeandrau, J.P., Chalandon, P., Poquillon, D., Nardin, M., Using the 3-point bending method to study failure initiation in epoxide-aluminum joints. Int. J. Adhes. Adhes. 75, 2017, 181-189.
[22] Bentadjine, S., Petiaud, R., Roche, A.A., Massardier, V., Organo-metallic complex characterization formed when liquid epoxy-diamine mixtures are applied onto metallic substrates. Polymer. 42(14), 2001, 6271-6282.
[23] Aufray, M., Roche, A.A., Residual stresses and practical adhesion: effect of organo-metallic complex formation and crystallization. J. Adhes. Sci. Technol. 20(16), 2006, 1889-1903
[24] ISO. 14679 - Adhesives - Measurement of adhesion characteristics by a three-point bending method. 1997.
[25] CEA – Saclay, Cast3m finite element code, Gif sur Yvette, France, 2003, http://wwwcast3m.cea.fr.
[26] Bresson, G., Jumel, J., Shanahan, M., Serin, P., Strength of adhesively bonded joints under mixed axial and shear loading. Int. J. Adhes. Adhes. 35, 2012, 27-35.