Nanostructure, Molecular Dynamics Simulation and Mechanical Performance of PCL Membranes Reinforced with Antibacterial Nanoparticles

Document Type : Research Paper


1 Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran

2 Department of Orthopedic Surgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan

3 New Technology Research Center, Amirkabir University of Technology, Tehran, Iran


Recently, the application of porous bio-nanocomposites has been considered by many researchers for orthopedic application. Since experimental tests for obtaining the mechanical and physical properties of these nanostructured biomaterials are very expensive and time-consuming, it is highly recommended to model and simulate these bio-nanoscale materials to predict their mechanical and physical properties. In this study, three-phase porous bio-nanocomposite membranes were fabricated with Titanium oxide (TiO2), Hydroxyapatite (HA) and Polycaprolactone (PCL) polymer. HA and TiO2 are both biocompatible and biodegradable. The samples were fabricated with various amounts of titanium oxide and the materials characterization has been performed on selected sample. The molecular dynamics technique (MD) have been used to predict the mechanical performance of the nanocomposite models. The MD simulations were performed for single phase material and the developed for two phases equivalent components as a new approach in using MD simulation results. The results indicated the close relationship between the experimental data and simulation values for the selected sample. Moreover, phase and morphology of these nanostructures have been investigated using SEM results. Therefore, based on the proposed approach, MD simulation can be applicable for predicting the properties of porous bio-nanocomposite membrane.


Main Subjects

[1] Xue, P., Pauly, S., Gan, W., Jiang, S., Fan, H., Ning, Z., Sun, J. Enhanced tensile plasticity of a CuZr-based bulk metallic glass composite induced by ion irradiation. Journal of Materials Science & Technology, 35(10), 2019, 2221-2226.
[2] Moradi-Dastjerdi, R., Aghadavoudi, F. Static analysis of functionally graded nanocomposite sandwich plates reinforced by defected CNT. Composite Structures, 200, 2018, 839-848.
[3] Peng, Y., Zarringhalam, M., Barzinjy, A. A., Toghraie, D., Afrand, M. Effects of surface roughness with the spherical shape on the fluid flow of Argon atoms flowing into the microchannel, under boiling condition using molecular dynamic simulation. Journal of Molecular Liquids, 297, 2020, 111650.
[4] Aghadavoudi, F., Golestanian, H., Tadi Beni, Y. Investigating the effects of CNT aspect ratio and agglomeration on elastic constants of crosslinked polymer nanocomposite using multiscale modeling. Polymer Composites, 39(12), 2018, 4513-4523.
[5] Aghdam, H. A., Sanatizadeh, E., Motififard, M., Aghadavoudi, F., Saber-Samandari, S., Esmaeili, S., Khandan, A. Effect of calcium silicate nanoparticle on surface feature of calcium phosphates hybrid bio-nanocomposite using for bone substitute application. Powder Technology, 361, 2020, 917-929.
[6] Sahmani, S., Saber-Samandari, S., Shahali, M., Yekta, H. J., Aghadavoudi, F., Montazeran, A. H. Khandan, A. Mechanical and biological performance of axially loaded novel bio-nanocomposite sandwich plate-type implant coated by biological polymer thin film. Journal of the Mechanical Behavior of Biomedical Materials, 88, 2018 238-250.
[7] Ghasemi, M., Nejad, M. G., Bagzibagli, K. Knowledge Management Orientation: An Innovative Perspective to Hospital Management. Iranian Journal of Public Health, 46(12), 2017, 1639.
[8] Ghadirinejad, M., Atasoylu, E., Izbirak, G., GHA-SEMI, M. A Stochastic Model for the Ethanol Pharmacokinetics. Iranian Journal of Public Health, 45(9), 2016, 1170.
[9] Ghasemi, M., Aghajani, M. A., Faraji, A., & Nejad, M. S. Relationship between incidence and severity of Alternaria blight disease on different species of Brassica in Gonbad region. Iranian Journal of Plant Path, 49(1), 2013, 17-19.
[10] Karamian, E., Nasehi, A., Saber-Samandari, S., Khandan, A. Fabrication of hydroxyapatite-baghdadite nanocomposite scaffolds coated by PCL/Bioglass with polyurethane polymeric sponge technique. Nanomedicine Journal, 4(3), 2017, 177-183.
[11] Salami, M. A., Kaveian, F., Rafienia, M., Saber-Samandari, S., Khandan, A., Naeimi, M. Electrospun polycaprolactone/lignin-based nanocomposite as a novel tissue scaffold for biomedical applications. Journal of Medical Signals and Sensors, 7(4), 2017, 228.
[12] Montazeran, A. H., Saber Samandari, S., Khandan, A. Artificial intelligence investigation of three silicates bioceramics-magnetite bio-nanocomposite: Hyperthermia and biomedical applications. Nanomedicine Journal5(3), 2018, 163-171.
[13] Esmaeili, S., Shahali, M., Kordjamshidi, A., Torkpoor, Z., Namdari, F., Samandari, S. S., Khandan, A. An artificial blood vessel fabricated by 3D printing for pharmaceutical application. Nanomedicine Journal, 6(3), 2019, 183-194.
[14] Barbaz-I, R. Experimental determining of the elastic modulus and strength of composites reinforced with two nanoparticles, Doctoral dissertation, MSc Thesis, School of Mechanical Engineering Iran University of Science and Technology, Tehran, Iran.
[15] Moeini, M., Barbaz Isfahani, R., Saber-Samandari, S., Aghdam, M. M. Molecular dynamics simulations of the effect of temperature and strain rate on mechanical properties of graphene–epoxy nanocomposites. Molecular Simulation, 46(6), 2020, 476-486.
[16] Razmjooee, K., Saber-Samandari, S., Keshvari, H., Ahmadi, S. Improving anti thrombogenicity of nanofibrous polycaprolactone through surface modification. Journal of Biomaterials Applications, 34(3), 2019, 408-418.
[17] Murugan, R., Ramakrishna, S. Crystallographic study of hydroxyapatite bioceramics derived from various sources. Crystal Growth & Design5(1), 2005, 111-112.
[18] Uhm, S. H., Lee, S. B., Song, D. H., Kwon, J. S., Han, J. G., Kim, K. N. Fabrication of bioactive, antibacterial TiO2 nanotube surfaces, coated with magnetron sputtered Ag nanostructures for dental applications. Journal of Nanoscience and Nanotechnology, 14(10), 2014, 7847-7854.
[19] Eshraghi, S., Das, S. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomaterialia, 6(7), 2010, 2467-2476.
[20] Maghsoudlou, M. A., Isfahani, R. B., Saber-Samandari, S., & Sadighi, M. Effect of interphase, curvature and agglomeration of SWCNTs on mechanical properties of polymer-based nanocomposites: Experimental and numerical investigations. Composites Part B: Engineering, 175, 2019, 107-119.
[21] Monshi, M., Esmaeili, S., Kolooshani, A., Moghadas, B. K., Saber-Samandari, S., & Khandan, A. A novel three-dimensional printing of electroconductive scaffolds for bone cancer therapy application. Nanomedicine Journal, 7(2), 2020, 138-148.
[22] Esmaeili, S., Aghdam, H. A., Motififard, M., Saber-Samandari, S., Montazeran, A. H., Bigonah, M., Khandan, A. A porous polymeric–hydroxyapatite scaffold used for femur fractures treatment: fabrication, analysis, and simulation. European Journal of Orthopaedic Surgery & Traumatology, 30(1), 2020, 123-131.
[23] Aghadavoudi, F., Golestanian, H., Tadi Beni, Y. Investigating the effects of resin crosslinking ratio on mechanical properties of epoxy‐based nanocomposites using molecular dynamics. Polymer Composites, 38, 2017, E433-E442.
[24] Montazeri, A., Sadeghi, M., Naghdabadi, R., Rafii-Tabar, H. Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites. Physics Letters A, 375(14), 2011, 1588-1597.
[25] Marcadon, V., Brown, D., Hervé, E., Melé, P., Albérola, N. D., Zaoui, A. Confrontation between Molecular Dynamics and micromechanical approaches to investigate particle size effects on the mechanical behaviour of polymer nanocomposites. Computational Materials Science, 79, 2013, 495-505.
[26] Farazin, A., Aghdam, H. A., Motififard, M., Aghadavoudi, F., Kordjamshidi, A., Saber-Samandari, S., Khandan, A. A polycaprolactone bio-nanocomposite bone substitute fabricated for femoral fracture approaches: Molecular dynamic and micro-mechanical Investigation. Journal of Nanoanalysis,6(3), 2019, 172-184
[27] Saber-Samandari, S., Yekta, H., Ahmadi, S., Alamara, K. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair. International Journal of Biological Macromolecules, 106, 2018, 481-488.
[28] Saber-Samandari, S., Yekta, H., Saber-Samandari, S. Effect of iron substitution in hydroxyapatite matrix on swelling properties of composite bead. JOM, 9(1), 2015, 19-25.
[29] Joneidi Yekta, H., Shahali, M., Khorshidi, S., Rezaei, S., Montazeran, A. H., Samandari, S. S., Khandan, A. Mathematically and experimentally defined porous bone scaffold produced for bone substitute application. Nanomedicine Journal, 5(4), 2018, 227-234.
[30] Tahririan, M. A., Motififard, M., Omidian, A., Aghdam, H. A., Esmaeali, A. Relationship between bone mineral density and serum vitamin D with low energy hip and distal radius fractures: A case-control study. Archives of Bone and Joint Surgery, 5(1), 2017, 22.
[31] Motififard, M., Vakili, M., Moezi, M. Short-Time Influence of Totah Hip Arthroplasty on Patients with Sever Hip Ostheoarthritis. Journal of Isfahan Medical School, 31(237), 2013, 1-10.
[32] Sahmani, S., Shahali, M., Khandan, A., Saber-Samandari, S., Aghdam, M. M. Analytical and experimental analyses for mechanical and biological characteristics of novel nanoclay bio-nanocomposite scaffolds fabricated via space holder technique. Applied Clay Science, 165, 2018, 112-123.
[33] Khandan, A., Karamian, E., Bonakdarchian, M. Mechanochemical synthesis evaluation of nanocrystalline bone-derived bioceramic powder using for bone tissue engineering. Dental Hypotheses, 5(4), 2014, 155.
[34] Heydary, H. A., Karamian, E., Poorazizi, E., Khandan, A., Heydaripour, J. A novel nano-fiber of Iranian gum tragacanth-polyvinyl alcohol/nanoclay composite for wound healing applications. Procedia Materials Science, 11, 2015, 176-182.
[35] Ghayour, H., Abdellahi, M., Nejad, M. G., Khandan, A., Saber-Samandari, S. Study of the effect of the Zn 2+ content on the anisotropy and specific absorption rate of the cobalt ferrite: the application of Co 1− x Zn x Fe 2 O 4 ferrite for magnetic hyperthermia. Journal of the Australian Ceramic Society, 54(2), 2018, 223-230.
[36] Karamian, E., Khandan, A., Kalantar Motamedi, M. R., Mirmohammadi, H. Surface characteristics and bioactivity of a novel natural HA/zircon nanocomposite coated on dental implants. BioMed Research International, Article ID 410627, 2014, 10p.
[37] Razavi, M., Khandan, A. Safety, regulatory issues, long-term biotoxicity, and the processing environment. In Nanobiomaterials Science, Development and Evaluation, Woodhead Publishing, 2017.
[38] Karamian, E. B., Motamedi, M. R., Mirmohammadi, K., Soltani, P. A., Khandan, A. M. Correlation between crystallographic parameters and biodegradation rate of natural hydroxyapatite in physiological solutions. Indian Journal of Scientific Research, 4(3), 2014, 92-9.
[39] Crane, G. M., Ishaug, S. L., Mikos, A. G. Bone tissue engineering. Nature Medicine, 1(12), 1995, 1322-1324.
[40] Irandoust, S., Müftü, S. The interplay between bone healing and remodeling around dental implants. Scientific Reports, 10(1), 2020, 1-10.
[41] Darwich, A., Nazha, H., Daoud, M. Effect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis. Journal of Applied and Computational Mechanics, 6(2), 2020, 284-295.
[42] Yang, W., Meyers, M. A., & Ritchie, R. O. Structural architectures with toughening mechanisms in Nature: A review of the materials science of Type-I collagenous materials. Progress in Materials Science, 103, 2019, 425-483.