Analysis of a Jet Pump Performance under Different Primary Nozzle ‎Positions and Inlet Pressures using two Approaches: One Dimensional ‎Analytical Model and Three Dimensional CFD Simulations‎

Document Type : Research Paper

Authors

1 Grupo de Investigación e Innovación Ambiental GIIAM, Po. Box, 050034 Medellín, Colombia‎

2 Facultad de Ingeniería, Institución Universitaria Pascual Bravo, Calle 73 # 73A – 226. 050034 Medellín, Colombia‎

3 Grupo de Investigación e Innovación Ambiental GIIAM, Po. Box, 050034 Medellín, Colombia

4 Semillero de Investigación Ambiental SIA, Po. Box, 050034 Medellín, Colombia

5 Semillero de Investigación Ambiental SIA, Po. Box, 050034 Medellín, Colombia‎

Abstract

A jet pump operates under the Venturi effect, where a fluid enters through a primary nozzle and, when passing through a convergent-divergent nozzle, it reaches supersonic conditions, originating a vacuum pressure in a secondary fluid. Fluid-dynamics simulations of jet pumps are performed here using standard k-ε turbulence model. Numerical results are compared to those obtained with an analytical model previously developed, concluding that both approaches predict a similar behavior of Match number, fluid pressure and fluid velocity. A parametric study is done to determine the influence of inlet pressure and primary nozzle position in jet pump performance, Mach number field and total pressure profile. Both parameters have an important influence in those variables, but this is not monotonic in all cases.

Keywords

Main Subjects

[1] Besagni, G., Ejectors on the cutting edge: The past, the present and the perspective, Energy, 170, 2019, 998–1003.
[2] Aidoun, Z., Ameur K., Falsafioon M, Badache M. Current Advances in Ejector Modeling, Experimentation and Applications for Refrigeration and Heat Pumps. Part 1: Single-Phase Ejectors, Inventions, 4, 2019, 2-73.
[3] Tang, Y., Liu Z., Shi C., Li Y., A novel steam ejector with pressure regulation to optimize the entrained flow passage for performance improvement in MED-TVC desalination system, Energy, 158, 2018, 305–316.
[4] Zheng, P., Li B., Qin J., CFD simulation of two-phase ejector performance influenced by different operation conditions, Energy, 155, 2018, 1129–1145.
[5] Deng, X., Dong J., Wang Z., Tu J., Numerical analysis of an annular water–air jet pump with self-induced oscillation mixing chamber, Journal of Computational Multiphase Flows, 9, 2017, 47-53.
[6] Varga, S., Oliveira A.C., Ma X., Omer S.A., Zhang W., Riffat SB., Experimental and numerical analysis of a variable area ratio steam ejector, International Journal of Refrigeration, 34, 2011, 1668–1675.
[7] Momeni, H., Domagała M. C.F.D. simulation of transport solid particles by jet pumps, Czasopismo Techniczne, 2M (7), 2016, 185-191.
[8] Liu W., Pochiraju K., A methodology for the prediction of back-pressure induced stall in eductor-jet pumps, International Journal of Refrigeration, 95, 2018, 165–174.
[9] Chandra, V. V., Ahmed MR., Experimental and computational studies on a steam jet refrigeration system with constant area and variable area ejectors, Energy Conversion and Management, 79, 2014, 377–386.
[10] Arbab, A.B.A, Others, Simulation of Ejector Flow Behavior Which Produce Vacuum in Power Plants Condenser, MSc. Thesis, Sudan University of Science and Technology, Sudan, 2018.
[11] Chen, J., Havtun H., Palm B., Investigation of ejectors in refrigeration system: Optimum performance evaluation and ejector area ratios perspectives, Applied Thermal Engineering, 64, 2014, 182–191.
[12] Thongtip, T., Aphornratana S., An experimental analysis of the impact of primary nozzle geometries on the ejector performance used in R141b ejector refrigerator, Applied Thermal Engineering, 110, 2017, 89–101.
[13] Chen, Z., Jin X., Dang C., Hihara E., Ejector performance analysis under overall operating conditions considering adjustable nozzle structure, International Journal of Refrigeration, 84, 2017, 274–286.
[14] Fan, J., Eves J., Thompson H.M., Toropov VV, Kapur N, Copley D, et al. Computational fluid dynamic analysis and design optimization of jet pumps, Computers and Fluids, 46, 2011, 212–217.
[15] Wang, X.-D., Dong J.-L., Numerical study on the performances of steam-jet vacuum pump at different operating conditions, Vacuum, 84, 2010, 1341–1346.
[16] Yapici, R., Aldacs K., Optimization of water jet pumps using numerical simulation, Proc Inst Mech Eng Part A J Power Energy, 227, 2013, 438–449.
[17] Aldas, K, Yapici R., Investigation of effects of scale and surface roughness on efficiency of water jet pumps using CFD, Engineering Applications of Computational Fluid Mechanics, 8, 2014, 14–25.
[18] Shah, A., Chughtai IR, Inayat M.H., Experimental and numerical analysis of steam jet pump, International Journal of Multiphase Flow, 37, 2011, 1305–14.
[19] Song, X-G., Park J-H, Kim S-G, Park Y-C., Performance comparison and erosion prediction of jet pumps by using a numerical method, Mathematical and Computer Modelling, 57, 2013, 245–53.
[20] Dong, J., Wang X, Tu J., Numerical research about the internal flow of steam-jet vacuum pump: evaluation of turbulence models and determination of the shock-mixing layer, Physics Procedia, 32, 2012, 614–22.
[21] Masud, J., Imran M., Turbulence Modeling for Realistic Computation of Internal Flow in Liquid Ejector Pumps, 54th AIAA Aerosp. Sci. Meet., Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016.
[22] Orozco, W., Modelo matemático de una bomba chorro para la producción de 8 kPa que permita la destilación de etanol, Instituto Tecnológico Metropolitano, Medellín, Colombia, MSc. Thesis, 2013.
[23] Uyazán, AM, Gil ID, Aguilar JL, Rodríguez G, Caicedo LA., Deshidratación del etanol, Ingeniería e Investigación, 24, 2004, 49–59.
[24] Orozco, W., Destilación al vacío de etanol usando bomba chorro, TecnoLógicas, 25, 2010, 77–96.
[25] Rusly, E., Aye L., Charters WWS, Ooi A. CFD analysis of ejector in a combined ejector cooling system, International Journal of Refrigeration, 28, 2005, 1092–1101.
[26] Sriveerakul, T., Aphornratana S, Chunnanond K. Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD result, International Journal of Thermal Sciences, 46, 2007, 812–822.
[27] Huang, B.J., Chang J.M., Empirical correlation for ejector design, International Journal of Refrigeration, 22, 1999, 379–388.
[28] Manrique, J. A., Termodinámica, Oxford University Press, Mexico, 2001.
[29] El-Dessouky, H., Ettouney H., Alatiqi I., Al-Nuwaibit G., Evaluation of steam jet ejectors, Chemical Engineering and Processing: Process Intensification, 41, 2002, 551–561.
[30] Robert, H., Chemical engineer’s hand book, 7th ed, McGraw Hill, New York, 1997.
[31] Sarkar, S., Lakshmanan B., Application of a Reynolds stress turbulence model to the compressible shear layer, AIAA Journal, 29, 1991, 743–749.
[32] ANSYS Fluent 12.0 Theory Guide-4.4.2 RNG-Model 2009. https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node59.htm
[33] ANSYS Fluent 12.0 User’s Guide - 12.6.1 Setting up the Standard or Realizable - Model n.d.
[34] Launder, B.E., Spalding, D.B., Lectures in Mathematical Models of Turbulence, Academic Press, London, 1972.
[35] ANSYS Fluent 12.0 User’s Guide - 26.13.1 Monitoring Residuals n.d. https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node812.htm