Discretization of the 2D Convection–Diffusion Equation Using ‎Discrete Exterior Calculus

Document Type : Research Paper

Authors

Centro de Investigación en Matemáticas A.C. CIMAT, Jalisco S/N, Col. Valenciana, Guanajuato, Gto, 36023, México

Abstract

While the Discrete Exterior Calculus (DEC) discretization of the diffusive term of the Transport Equation is well understood, the DEC discretization of the convective term, as well as its stabilization, is an ongoing area of research. In this paper, we propose a local discretization for this term based on DEC and geometric arguments, considering the particle velocity field prescribed at the vertices of the primal mesh. This formulation is similar to that of the Finite Element Method with linear interpolation functions (FEML) and can be stabilized using known stabilization techniques, such as Artificial Diffusion. Using this feature, numerical tests are carried out on simple stationary and transient problems with domains discretized with coarse and fine simplicial meshes to show numerical convergence.

Keywords

Main Subjects

[1] Cartan, E., Sur Certaines Expressions Différentielles et le problème de Pfaff, Annales Scientifiques de l’École Normale Supérieure, 16, 1899, 239-332.
[2] Hirani, A., Discrete Exterior Calculus, Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 2003.
[3] Douglas, A., Falk, R., Winther, R., Finite Element Exterior Calculus: From Hodge Theory to Numerical Stability, Bulletin of the American Mathematical Society, 47, 2010, 281-354.
[4] Demlow, A., Hirani, A., A Posteriori Error Estimates for Finite Element Exterior Calculus: The de Rham Complex, Foundations of Computational Mathematics, 14, 2014, 1337-1371.
[5] Satoh, T., Yaguchi, T., On the Equivalence of the Norms of the Discrete Differential Forms in Discrete Exterior Calculus, Japan Journal of Industrial and Applied Mathematics, 36, 2019, 3-24.
[6] Hirani, A., Nakshatrala, K., Chaudhry, J., Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus, International Journal for Computational Methods in Engineering Science and Mechanics, 16(3), 2008, 151-169.
[7] Mohamed, M., Hirani, A., Samtaney, R., Discrete Exterior Calculus of Incompressible Navier - Stokes Equations Over Surface Simplicial Meshes, Journal of Computational Physics, 312, 2016, 175 – 191.
[8] Nitschke, I., Reuther, S., Voigt, A., Discrete Exterior Calculus (DEC) for the Surface Navier-Stokes Equation, Bothe D., Reusken A. (eds) Transport Processes at Fluidic Interfaces. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham, 2017, 177-197.
[9] Schulz, E., Tsogtgerel, G., Convergence of Discrete Exterior Calculus Approximations for Poisson Problems, Discrete and Computational Geometry, 63, 2020, 346-376.
[10] Dassios, I., Jivkov, A., Abu-Muharid, A., James, P., A mathematical model for plasticity and damage: A discrete calculus formulation, Journal of Computational and Applied Mathematics, 312, 2015, 27-38.
[11] Griebel, M., Rieger, C., Schier, A., Upwind Schemes for Scalar Advection-Dominated Problems in the Discrete Exterior Calculus, Bothe D., Reusken A. (eds) Transport Processes at Fluidic Interfaces. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham, 2017, 145-175.
[12] Mullen, P., McKenzie, A., Pavlov, D., Durant, L., Tong, Y., Kanso, E., Marsden, J. E., Desbrun, M., Discrete Lie Advection of Differential Forms, Foundations of Computational Mathematics, 11, 2011, 131-149.
[13] Squires, T., Messinger, R. J., Manalis, S. R., Making it Stick: Convection, Reaction and Diffusion in Surface-Based Biosensors, Nature Biotechnology, 26(4), 2008, 417–426.
[14] Giaccherini, A., Al Khatib, M., Cinotti, S., Piciollo, E., Berretti, E., Giusti, P., Innocenti, M., Montegrossi, G., Lavacchi, A., Analysis of mass transport in ionic liquids: a rotating disk electrode approach, Scientific Reports, 10(1), 2020, 13433.
[15] Kim, A. S., Complete Analytic Solutions for Convection-Diffusion-Reaction-Source Equations without using an Inverse Laplace Transform, Scientific Reports, 10(1), 2020, 8040.
[16] Zoppou, C., Knight J. H., Analytical Solutions for Advection and Advection-Diffusion Equations with Spatially Variable Coefficients, Journal of Hydraulic Engineering, 123, 1997, 144-148.
[17] Costa, C., Vilhena, M., Moreira, D., Tirabassi, T., Semi-Analytical Solution of the Steady Three-Dimensional Advection-Diffusion Equation in the Planetary Boundary Layer, Atmospheric Environment, 40, 2006, 5659 – 5669.
[18] Kumar, A., Jaiswal, D. K., Kumar, N., Analytical Solutions to One-Dimensional Advection-Diffusion Equation with Variable Coefficients in Semi-Infinite Media, Journal of Hydrology, 380, 2010, 330-337.
[19] Brooks, A., Hughes, T., Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations, Computer Methods in Applied Mechanics and Engineering, 32,1982, 199-259.
[20] Hughes, T., Franca, L., Hulbert, G., A New Finite Element Formulation for Computational Fluid Dynamics: VIII. The Galerkin/Least-Squares Method for Advective-Diffusive equations, Computer Methods in Applied Mechanics and Engineering, 73, 1989, 173–189.
[21] Esqueda, H., Herrera, R., Botello, S., Valero, C., Anisotropy in 2D Discrete Exterior Calculus, Preprint, 2018.
[22] Esqueda, H., Herrera, R., Botello, S., Moreles, M.A., A Geometric Description of Discrete Exterior Calculus for General Triangulations, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 35(1), 2019, 2.
[23] Crane, K., de Goes, F., Desbrun, M., Schröder, P., Digital Geometry Processing with Discrete Exterior Calculus, ACM SIGGRAPH 2013 courses, California, USA, SIGGRAPH '13, 2013.
[24] Kusmin, D., A Guide to Numerical Methods for Transport Equations, Friedrich-Alexander-Universität, Erlang-Nürnberg, 2010.