The Permutation Entropy and its Applications on Fire Tests Data

Document Type : Research Paper


1 Police Academy "Alexandru Ioan Cuza", Fire Officers Faculty, Str. Morarilor 3, Sector 2, Bucharest RO-022451, Romania‎

2 Academy of Economic Studies, Department of Applied Mathematics, Calea Dorobanti 15-17, Sector 1, Bucharest RO-010552, Romania‎

3 British Research Establishment, Bucknalls Lane, WD25 9NH, Watford, UK

4 Romanian Fire Safety Association, Bucharest, Romania


Based on the data gained from a full-scale experiment, the order/disorder characteristics of the compartment fire temperatures are analyzed. Among the known permutation/encoding type entropies used to analyze time series, we look for those that fit better in the fire phenomena. The literature in its major part does not focus on time series with data collected during full-scale fire experiments, therefore we do not only perform our analysis and report the results, but also discuss methods, algorithms, the novelty of our entropic approach and details behind the scene. The embedding dimension selection in the complexity evaluation is also discussed. Finally, more research directions are proposed.


Main Subjects

[1] Murayama, S., Kaku, K., Funatsu, M., Gotoda, H., Characterization of dynamic behavior of combustion noise and detection of blowout in a laboratory-scale gas-turbine model combustor. Proceedings of the Combustion Institute, 37(4), 2019, 5271-5278.
[2] Takagi, K., Gotoda, H., Tokuda, I. T., Miyano, T., Dynamic behavior of temperature field in a buoyancy-driven turbulent fire, Physics Letters A, 382(44), 2018, 3181-3186.
[3] Mitroi-Symeonidis, F. -C., Anghel, I., Furuichi, S., Encodings for the calculation of the permutation hypoentropy and their applications on full-scale compartment fire data, Acta Technica Napocensis, 62(4), 2019, 607-616.
[4] Mitroi-Symeonidis, F. -C., Anghel, I., Minculete, N., Parametric Jensen-Shannon statistical complexity and its applications on full-scale compartment fire data, Symmetry-Basel (Special Issue: Symmetry in Applied Mathematics), 12(1), 2020, 22.
[5] Babrauskas, V., Estimating Room Flashover Potential, Fire Technology, 16(2), 1980, 94-104.
[6] McCaffrey, B. I., Quintiere, I. G., Harkleroad, M. F., Estimating room fire temperatures and the likelihood of flashover using fire test data correlations, Fire Technology, 17(2), 1981, 98-119.
[7] Peacock, R. D., Reneke, P. A., Bukowski, R. W., Babrauskas, V., Defining flashover for fire hazard calculations, Fire Safety Journal 32 (4), 331-345.
[8] Thomas, P. H., Testing products and materials for their contribution to flashover in rooms, Fire and Materials, 5(3), 1981, 103-111.
[9] Beard, A. N., Flashover and boundary properties, Fire Safety Journal, 45(2), 2010, 116-121.
[10] Kerber, S., Analysis of changing residential fire dynamics and its implications on firefighter operational timeframes, Fire Technology, 48(4), 2012, 865-891, 865-891.
[11] IGSU. Studiu privind statistica incendiilor la locuinţe si gospodarii cetatenesti (Romanian), 2010. Retrieved from
[12] Babrauskas, V., Ignition of wood: a review of the state of the art, Journal of Fire Protection Engineering, 12(3), 2002, 163-189.
[13] Hakkarainen, T., Mikkola, E., Ostman, B., Tsantaridis, L., Brumer, H., Piispanen, P., Innovative eco-efficient high fire performance wood products for demanding applications. VTT, Finland; SP Tratek, Sweden; KTH Biotechnology, Sweden, 2005, 1-47.
[14] Mikkola, E., Review of reaction to fire performance of wood based products. Proceedings of 8th World Conference on Timber Engineering, 2004, 325-330.
[15] Grexa, O., Dietenberger, M. A., White, R. H., Reaction-to-fire of wood products and other building materials: Part 1, Room/corner test performance, Research Paper-Forest Products Laboratory, USDA Forest Service, (FPL-RP-663), 2011.
[16] Graham, T. L., Makhviladze, G. M., Roberts, J. P., On the theory of flashover development, Fire Safety Journal, 25(3), 1995, 229-259.
[17] Shannon, C. E., A mathematical theory of communication, Bell System Technical Journal, 27(3), 1948, 379-423.
[18] Kullback, S., Leibler, L. A., On information and sufficiency, Annals of Mathematical Statistics, 22(1), 1951, 79-86.
[19] López-Ruiz, R., Mancini, H. L., Calbet, X., A statistical measure of complexity, Physics Letters A, 209(5-6), 1995, 321-326.
[20] Lamberti, P. W., Martin, M. T., Plastino, A., Rosso, O. A., Intensive entropic non-triviality measure, Physica A: Statistical Mechanics and its Applications, 334(1-2), 2004, 119-131.
[21] Zunino, L., Soriano, M. C., Rosso, O. A., Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach, Physical Review E, 86(4), 2012, 046210.
[22] Bandt, C., Pompe, B., Permutation entropy: a natural complexity measure for time series, Physical Review Letters, 88(17), 2002, 174102.
[23] Kulp, C. W., Zunino, L. Discriminating chaotic and stochastic dynamics through the permutation spectrum test, Chaos: An Interdisciplinary Journal of Nonlinear Science, 24(3), 2014, 033116.
[24] Cao, T., Tung, W. W., Gao, J. B., Protopopescu, V. A., Hively, L. M., Detecting dynamical changes in time series using the permutation entropy, Physical Review E, 70(4), 2004, 046217.
[25] Duan, S., Wang, F., Zhang, Y., Research on the biophoton emission of wheat kernels based on permutation entropy, Optik, 178, 2019, 723-730.
[26] Fadlallah, B., Chen, B., Keil, A., Príncipe, J., Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information, Physical Review E, 87(2), 2013, 022911.
[27] Zhang, Y., Shang, P., Refined composite multiscale weighted-permutation entropy of financial time series, Physica A: Statistical Mechanics and its Applications, 496, 2018, 189-199.
[28] Bian, C. Q., Modified permutation-entropy analysis of heartbeat dynamics, Physical Review E, 85(2), 2012, 021906.
[29] Fadeev, D. K., Zum Begriff der Entropie eines endlichen Wahrscheinlichkeitsschemas. Arbeiten zur Informationstheorie I, Deutscher Verlag der Wissenschaften, Berlin, 1957.
[30] Watt, S. J., Politi, A., Permutation entropy revisited, Chaos, Solitons & Fractals, 120, 2019, 95-99.
[31] Scarpino, S.V., Petri, G., On the predictability of infectious disease outbreaks, Nature Communications, 10, 2019, 898.
[32] Waschke, L., Wöstmann, M., Obleser, J., States and traits of neural irregularity in the age-varying human brain, Scientific Reports, 7, 2017,17381.
[33] Lange, N., Schleifer, S., Berndt, M. et al. Permutation entropy in intraoperative ECoG of brain tumour patients in awake tumour surgery– a robust parameter to separate consciousness from unconsciousness, Scientific Reports,9, 2019,16482.
[34] Mitroi-Symeonidis, F.-C., Anghel, I., Tozzi, A., Preventing a COVID-19 pandemic flashover (electronic response to: Day M. 2020. Covid-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village. BMJ 2020;368:m1165), 2020.