[1] Cordier, P., Amodeo, J., Carrez, P., Modelling the rheology of MgO under Earth's mantle pressure, temperature and strain rates, Nature, 481(7380), 2012, 177-180.
[2] Asaadi, N., Ribe, N.M., Sobouti, F., Inferring nonlinear mantle rheology from the shape of the Hawaiian swell, Nature, 473(7348), 2011, 501-504.
[3] Koos, E., Willenbacher, N., Capillary Forces in Suspension Rheology, Science, 331(6019), 2011, 897-900.
[4] He, J.H., Jin, X., A short review on analytical methods for the capillary oscillator in a nanoscale deformable tube, Mathematical Methods in the Applied Sciences, 2020, DOI: 10.1002/mma.6321.
[5] Ming, C.L., Freeze form extrusion fabrication of ceramic parts, Virtual and Physical Prototyping, 1(2), 2006, 93-100.
[6] Liu, H.J., Liu, J., Leu, M.C., Landers, R., Huang, T.S., Factors influencing paste extrusion pressure and liquid content of extrudate in freeze form extrusion fabrication, International Journal of Advanced Manufacturing Technology, 67(1-4), 2013, 899-906.
[7] Liu, H.J., Li, Y.M., Li, D.J., Research on rheological properties and extrusion behavior of aqueous alumina paste in paste extrusion based SFF processes, International Journal of Advanced Manufacturing Technology, 83(9-12), 2016, 2039-2047.
[8] Zuo, Y.T., Effect of SiC particles on viscosity of 3D print paste: A Fractal rheological model and experimental verification, Thermal Science, 25(4), 2021.
[9] Gnatowski, A., Kijo-Kleczkowska, A., Otwinowski, H., Sikora, P.,The research of the thermal and mechanical properties of materials produced by 3D printing method, Thermal Science, 23(4S), 2019, S1211-S1216.
[10] Holland, C., Terry, A.E., Porter, D., Comparing the rheology of native spider and silkworm spinning dope, Nature Materials, 5(11), 2006, 870.
[11] He, J.H., On the height of Taylor cone in electrospinning, Results in Physics, 17, 2020, 103096.
[12] He, C.H., Shen, Y., Ji, F.Y., He, J.H., Taylor series solution for fractal Bratu-type equation arising in electrospinning process, Fractals, 28(1), 2020, 2050011.
[13] Li, X.J., Liu, Z., He, J.H., A fractal two-phase flow model for the fiber motion in a polymer filling process, Fractals, 28(5), 2020, DOI: 10.1142/S0218348X20500930.
[14] Yang, X.J., New non-conventional methods for quantitave concepts of anomalous rheology, Thermal Science, 23(6B), 2019, 4117-4127.
[15] Ozenda, O., Saramito, P., Chambon, G., Tensorial rheological model for concentrated non-colloidal suspensions: normal stress differences, Journal of Fluid Mechanics, 898 (A25), 2020.
[16] Xing, H.Y., Zou, B., Wang, X.F., Hu, Y.F., Huang, C.Z., Xue, K., Fabrication and characterization of SiC whiskers toughened Al2O3 paste for stereolithography 3D printing applications, Journal of Alloys and Compounds, 828, 2020, 154347.
[17] Gnyla, J., Gubernat, A., Zych, L., Nocun, M., Goral, Z., Lach, R., Influence of TMAH and NaOH on the stability of SiC aqueous suspensions, Ceramics International, 46(8A), 2020, 11208-11217.
[18] Glushkov, D.O., Lyrschikov, S.Y., Shevyrev, S.A., Yashutina, O.S., Rheological properties of coal water slurries containing petrochemicals, Thermal Science, 23(5B), 2019, .2939-2949
[19] He, J.H., Fractal calculus and its geometrical explanation, Results in Physics, 10, 2018, 272-276.
[20] He, J.H., Ain, Q.T., New promises and future challenges of fractal calculus: from two-scale Thermodynamics to fractal variational principle, Thermal Science, 24(2A), 2020, 659-681.
[21] He, J.H., Ji, F.Y., Two-scale mathematics and fractional calculus for thermodynamics, Thermal Science, 23(4), 2019, 2131-2133.
[22] Ain, Q.T., He, J.H., On two-scale dimension and its applications, Thermal Science, 23(3B), 2019, 1707-1712.
[23] Wang, K.L., Effect of Fangzhu's nanoscale surface morphology on water collection, Mathematical Methods in the Applied Sciences, 2020, DOI:10.1002/mma.6569.
[24] He, C.H., He, J.H., Sedighi, H.M., Fangzhu(方诸): an ancient Chinese nanotechnology for water collection from air: history, mathematical insight, promises and challenges, Mathematical Methods in the Applied Sciences, 2020, DOI: 10.1002/mma.6384.
[25] He, J.H. , El-Dib, Y.O., Homotopy perturbation method for Fangzhu oscillator, Journal of Mathematical Chemistry, 2020, DOI: 10.1007/s10910-020-01167-6.
[26] Shen, Y., He, J.H., Variational principle for a generalized KdV equation in a fractal space, Fractals, 28(4), 2020, 2050069.
[27] Wang, Y., An, J.Y., Wang, X.Q., A variational formulation for anisotropic wave traveling in a porous medium, Fractals, 27(4), 2019, 1950047.
[28] Wang, Y., Deng, Q.G., Fractal derivative model for tsunami traveling, Fractals, 27(2), 2019, 1950017.
[29] Ji, F.Y., He, C.H., Zhang, J.J., He, J.H., A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar, Appllied Mathematical Modelling, 82, 2020, 437-448.
[30] He, J.H., A fractal variational theory for one-dimensional compressible flow in a microgravity space, Fractals, 28(2), 2020, 2050024.
[31] Fan, J., Yang, X., Liu, Y., Fractal calculus for analysis of wool fiber: Mathematical insight of its biomechanism, Journal of Engineered Fibers and Fabrics, 14, 2019, 1558925019872200.
[32] Wang, Q.L., Shi, X.Y., He, J.H., Li, Z.B., Fractal calculus and its application to explanation of biomechanism of polar bear’s hairs, Fractals, 27(5), 2019, 1992001.
[33] Wang, Q.L., Shi, X.Y., He, J.H., Li, Z.B., Fractal calculus and its application to explanation of biomechanism of polar bear’s hairs, Fractals, 26(6), 2018, 1850086.
[34] Lin, L., Yao, S.W., Li, H., Silver ion release from Ag/PET hollow fibers: Mathematical model and its application to food packing, Journal of Engineered Fibers and Fabrics, 2020, 15, DOI: 10.1177/1558925020935448.
[35] Lin, L., Yao, S.W., Fractal diffusion of silver ions in hollow cylinders with unsmooth inner surface, Journal of Engineered Fibers and Fabrics, 14, 2019, DOI: 10.1177/1558925019895643.
[36] Lin, L., Yao, S.W., Release oscillation in a hollow fiber-Part 1: Mathematical model and fast estimation of its frequency, Journal of Low Frequency Noise, Vibration and Active Control, 38(3-4), 2019, 1703-1707.
[37] Wang, Y., Yao, S.W., Yang, H.W., A fractal derivative model for snow’s thermal insulation property, Thermal Science, 23(4), 2019, 2351-2354.
[38] Liu, H.Y., Yao, S.W., Yang, H.W., Liu, J., A fractal rate model for adsorption kinetics at solid/solution interface, Thermal Science, 23(4), 2019, 2477-2480.
[39] Wang, K.L., Wei C.F., A powerful and simple frequency formula to nonlinear fractal oscillators, Journal of Low Frequency Noise, Vibration and Active Control, 2020, DOI: 10.1177/1461348420947832.
[40] Wang, K.L., Variational principle for nonlinear oscillator arising in a fractal nano/microelectromechanical system, Mathematical Methods in the Applied Sciences, 2020, DOI: 10.1002/mma.6726.
[41] He, J.H., Nurakhmetov, D., Skrzypacz, P., et al., Dynamic pull-in for micro-electromechanical device with a current-carrying conductor, Journal of Low Frequency Noise, Vibration and Active Control, 2020, DOI: 10.1177/1461348419847298.
[42] Mandelbrot, B., How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional dimension, Science, 156(3775), 1967, 636-638.
[43] Zhou, C.J., Tian, D., He, J.H., Highly selective penetration of red ink in a saline water, Thermal Science, 23(4), 2019, 2265-2270.