Accelerating the Convergence of Multiphase Flow Simulations ‎when Employing Non-Uniform Structured Grids

Document Type : Research Paper


1 Department of Chemical Engineering, UPSON II Room 365, 241 Centennial Drive, University of North Dakota,‎ Grand Forks, ND 58202-7101, USA‎

2 Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-350, Cambridge, Massachusetts 02139,‎ USA

3 Department of Chemical Engineering, 50 S. Central Campus Dr., Room 3290 MEB, University of Utah, Salt Lake City, UT 84112-9203, USA‎


Non-uniform grids inevitably arise in multiphase flow simulation scenarios due to the need to resolve near-wall phenomena and/or large L/D ratios associated with the reactor configuration. This in conjunction with large density ratios of the constituent phases can retard the convergence of the pressure-correction equation that results from applying operator-splitting methods to the incompressible Navier-Stokes equations. Various pre-conditioning strategies to this ill-conditioned pressure-correction matrix are explored in this study for a class of bubbling bed simulations encompassing: different particle densities, bed-heights and dimensions (2D/3D). The right-side Block Jacobi preconditioning option resulted in a 20 - 35% decrease in CPU time that correlated well with a decrease in the number of iterations to reach a specified tolerance.


Main Subjects

‎[1] Kunz, R.F., Boger, D.A., Stinebring, D.R., Chyczewski, T.S., Lindau, J.W., Gibeling, H.J., Venkateswaran, S., Govindan, T.R., A preconditioned ‎Navier–Stokes method for two-phase flows with application to cavitation prediction, Computers & Fluids, 29(8), 2000, 849-875. ‎
‎[2] Syamlal, M., MFIX documentation: numerical technique, National Energy Technology Laboratory, Department of Energy, Technical Note ‎No. DOE/MC31346-5824, 1998.‎
‎[3] Hua, J., Lou, J., Numerical simulation of bubble rising in viscous liquid, Journal of Computational Physics, 222, 2007, 769-795.‎
‎[4] Duffy, A.U., Kuhnle, A.L., Sussman, M., An improved variable density pressure projection solver for adaptive meshes, From URL ‎ (last accessed: 4/26/2018)‎
‎[5] Dehbi, A., A CFD model for particle dispersion in turbulent boundary layer flows, Nuclear Engineering and Design, 238(3), 2008, 707-715. ‎
‎[6] Saito, Y., Takami, R., Nakamori, I., Ikohagi, T., Numerical analysis of unsteady behavior of cloud cavitation around a NACA0015 foil, ‎Computational Mechanics, 40(1), 2007, 85.‎
‎[7] Gupta, R., Fletcher, D.F., Haynes, B.S., CFD modelling of flow and heat transfer in the Taylor flow regime, Chemical Engineering Science, ‎‎65(6), 2010, 2094-2107.‎
‎[8] Ryan, E.M., DeCroix, D., Breault, R., Xu, W., Huckaby, E.D., Saha, K., Dartevelle, S., Sun, X. , Multi-phase CFD modeling of solid sorbent ‎carbon capture system, Powder Technology, 242, 2013, 117-134.‎
‎[9] Tingwen Li, A.G., Pannala, S., Shahnama, M., Syamlal, M., CFD simulations of circulating fluidized bed risers, part II, evaluation of ‎differences between 2D and 3D simulations, Powder Technology, 265, 2014, 13-22.‎
‎[10] Ghadirian, M., Hayes, R.E., Mmbaga, J., Afacan, A., Xu, Z., On the simulation of hydrocyclones using CFD, The Canadian Journal of Chemical Engineering, 91(5), 2013, 950-958.‎
‎[11] Li, T., Dietiker, J.F., Zhang, Y., Shahnam, M., Cartesian grid simulations of bubbling fluidized beds with a horizontal tube bundle, ‎Chemical Engineering Science, 66(23), 2011, 6220-6231.‎
‎[12] Coutier-Delgosha, O., Fortes-Patella, R., Reboud, J.L., Hofmann, M., Stoffel, B., Experimental and numerical studies in a centrifugal ‎pump with two-dimensional curved blades in cavitating condition, Journal of Fluids Engineering, 125(6), 2003, 970-978.‎
‎[13] Smith, J., Matrix Solution Techniques for CFD Applications on Non-Uniform Grids, In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, pp. 1319-1324, American Society of Mechanical Engineers, 2004.‎
‎[14] Buelow, P.E.O., Venkateswaran, S., Merkle, C.L., Effect of grid aspect ratio on convergence, AIAA Journal, 32(12), 1994, 2401-2408.‎
‎[15] Hu, Y.F., Carter, J.G., Blake, R.J., The effect of the grid aspect ratio on the convergence of parallel CFD algorithms, Parallel Computational Fluid Dynamics, 1995, 289-296. ‎
‎[16] Coutier-Delgosha, O., Fortes-Patella, R., Reboud, J.L., Hakimi, N., Hirsch, C., Stability of preconditioned Navier–Stokes equations ‎associat,ed with a cavitation model, Computers & Fluids, 34(3), 2005, 319-349. ‎
‎[17] Syamlal, M., Rogers, W., O’Brien, T.J., MFIX documentation: theory guide, U.S. Dept. of Energy, Office of Fossil Energy, Technical Note No.‎‎ DOE/METC-94/1004, 1993.‎
‎[18] Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W., Karpeyev, D., Kaushik, D., Knepley, M., May, D., McInnes, L.C., Mills, R., Munson, T., Rupp, K., Sanan, P., Smith, B., Zampini, S., Zhang, H., Zhang, H., PETSc users manual, Argonne National Laboratory, ANL-95/11 Rev. 3.9, 2013.‎
‎[19] Zhang, J., Preconditioned Krylov subspace methods for solving nonsymmetric matrices from CFD applications, Computer Methods in Applied Mechanics and Engineering, 189(3), 2000, 825-840.‎
‎[20] Ghai, A., Lu, C., Jiao, X., A comparison of preconditioned krylov subspace methods for large-‎scale nonsymmetric linear systems, arXiv:1607.00351, 2017.‎
‎[21] Musser, J., Choudhary, A., MFIX documentation volume 3: verification and validation manual, National Energy Technology Laboratory, From URL, 2015 (last accessed: 6/24/2018).‎
‎[22] Syamlal, M., Musser, J., Dietiker, J.F., The two-fluid model in MFIX, In: Multiphase Flow Handbook (2nd Ed.), Boca Rotan, FL, USA, Taylor ‎& Francis Group, LLC, 242-275, 2017.‎
‎[23] Patankar, S.V., Numerical heat transfer and fluid flow, New York, Hemisphere Publishing Corporation, 1980.‎
‎[24] Clarke, L.E., Interfacing the CFD Code MFiX with the PETSc Linear Solver Library to Achieve Reduced Computation Times, MS Thesis, ‎The University of North Dakota, 2018‎
‎[25] Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and Applied Mathematics, 2013. ‎
‎[26] Hiroto, T., Sakurai, T., On single precision preconditioners for Krylov subspace iterative methods, In International Conference on Large-Scale Scientific Computing, pp. 721-728. Springer, Berlin, Heidelberg, 2007.‎
‎[27] Leonard, B.P., Mohktari, S., Beyond first-order upwinding: the ultra-sharp alternative for non-oscillatory steady-state simulation of ‎convection, International Journal for Numerical Methods in Engineering, 30(4), 1990, 729-766.‎
‎[28] Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Harmann, R., Hillewaert, K., Huynh, H.T., Kroll, N., ‎May, G., Persson, P.-O., van Leer, B., Visbal, M., High‐order CFD methods: current status and perspective, International Journal for Numerical Methods in Fluids, 72(8), 2013, 811-845.‎
‎[29] Utikar, R.P., Ranade, V.V., Single jet fluidized beds: experiments and CFD simulations with glass and polypropylene particles, ‎Chemical Engineering Science, 62(1-2), 2007, 167-183.‎
‎[30] Uddin, M.H., Coronella, C.J., Effects of grid size on predictions of bed expansion in bubbling fluidized beds of Geldart B particles: A ‎generalized rule for a grid-independent solution of TFM simulations, Particuology, 34, 2017, 61-69. ‎
‎[31] Dietiker, J.-F., MFIX results sensitivity to Fortran compilers. From URL ‎ (2012) (last ‎accessed: 7/24/2018)‎
‎[32] Van Wachem, B.G.M., Schouten, J.C., Krishna, R., Van den Bleek, C.M., Validation of the Eulerian simulated dynamic behaviour of gas–‎solid fluidised beds, Chemical Engineering Science, 54(13-14), 1999, 2141-2149. ‎
‎[33] Hernández-Jiménez, F., Sánchez-Delgado, S., Gómez-García, A., Acosta-Iborra, A., Comparison between two-fluid model simulations ‎and particle image analysis & velocimetry (PIV) results for a two-dimensional gas–solid fluidized bed, Chemical Engineering Science, ‎‎66(17), 2011, 3753-3772. ‎
‎[34] Benyahia, S., Fine‐grid simulations of gas‐solids flow in a circulating fluidized bed, AIChE Journal, 58(11), 2012, 3589-3592. ‎
‎[35] Chow, E., Cleary, A.J., Falgout, R.D., Design of the Hypre Preconditioner Library, Lawrence Livermore National Laboratory, UCRL-JC-‎‎132025, Livermore, California, 1998‎
‎[36] Kronbichler, M., Diagne, A., Holmgren, H., A fast massively parallel two-phase flow solver for microfluidic chip simulation, The International Journal of High Performance Computing Applications, 32(2), 2018, 266-287.‎
‎[37] Schmidt, J., Berzins, M., Thornock, J., Saad, T., Sutherland, J.C., Large scale parallel solution of incompressible flow problems using ‎uintah and hypre, In Cluster, Cloud and Grid Computing (CCGrid), 13th IEEE/ACM International Symposium, pp. 458-465, 2013.‎
‎[38] Klaij, C.M., Vuik, C., SIMPLE‐type preconditioners for cell‐centered, colocated finite volume discretization of incompressible ‎Reynolds‐averaged Navier–Stokes equations, International Journal for Numerical Methods in Fluids, 71(7), 2013, 830-849.‎
‎[39] Guermond, J.L., Salgado, A., A splitting method for incompressible flows with variable density based on a pressure Poisson ‎equation, Journal of Computational Physics, 228(8), 2009, 2834-2846.‎