Nonlinear Multiscale Modelling and Design using Gaussian Processes

Document Type : Research Paper


1 Department of Civil Engineering, University of Moratuwa, Sri Lanka

2 Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka


A method for nonlinear material modeling and design using statistical learning is proposed to assist in the mechanical analysis of structural materials. Conventional computational homogenization schemes are proven to underperform in analyzing the complex nonlinear behavior of such microstructures with finite deformations. Also, the higher computational cost of the existing homogenization schemes inspires the inception of a data-driven multiscale computational homogenization scheme. In this paper, a statistical nonlinear homogenization scheme is discussed to mitigate these issues using the Gaussian Process Regression technique. A data-driven model is trained for different strain states of microscale unit cells. In the macroscale, nonlinear response of the macroscopic structure is analyzed, for which the stresses and material responses are predicted by the trained surrogate model.


Main Subjects

[1]   Beecroft, M., Digital interlooping: 3D printing of weft-knitted textile-based tubular structures using selective laser sintering of nylon powder, Int. J. Fash. Des. Technol. Educ., 12(2), 2019, 218-224.
[2]   Dinh, T. D., Weeger, O., Kaijima, S., Yeung, S.-K., Prediction of mechanical properties of knitted fabrics under tensile and shear loading: Mesoscale analysis using representative unit cells and its validation, Compos. Part B Eng., 148, 2018,  81-92.
[3]   Weeger, O. et al., Nonlinear Multi-Scale Modelling, Simulation and Validation of 3D Knitted Textiles, Appl. Compos. Mater., 1-14.
[4]   Yvonnet, J., Monteiro, E., He, Q.-C., Computational homogenization method and reduced database model for hyperelastic heterogeneous structures, Int. J. Multiscale Comput. Eng., 11(3), 2013, 201-225.
[5]   Le, B. A., Yvonnet, J., He, Q.-C., Computational homogenization of nonlinear elastic materials using neural networks, Int. J. Numer. Methods Eng., 104(12), 2015, 1061-1084.
[6]   Kaldor, J. M., James, D. L., Marschner, S., Kaldor, J. M., James, D. L.,  Marschner, S., Simulating knitted cloth at the yarn level, ACM SIGGRAPH 2008 papers on - SIGGRAPH ’08, 27(3), 2018.
[7]   Nadler, B., Papadopoulos, P., Steigmann, D. J., Multiscale constitutive modeling and numerical simulation of fabric material, Int. J. Solids Struct., 43(2), 2006, 206-221.
[8]   Jones, R. M., Mechanics Of Composite Materials, Taylor & Francis, 1998.
[9]   Yeoman, M. S., Reddy, D., Bowles, H. C., Bezuidenhout, D., Zilla, P., Franz, T., A constitutive model for the warp-weft coupled non-linear behavior of knitted biomedical textiles, Biomaterials, 31(32), 2010, 8484-8493.
[10] Bessa, M. A. et al., A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality, Comput. Methods Appl. Mech. Eng., 320, 2017, 633-667.
[11] Bessa, M. A., Data-driven Multi-scale Analyses of Materials and Structures, Ph. D. Thesis, Northwestern University, 2016.
[12] Geers, M. G. D., Kouznetsova, V. G., Matouš, K., Yvonnet, J., Homogenization Methods and Multiscale Modeling: Nonlinear Problems, Encyclopedia of Computational Mechanics, 2017, 1-34.
[13] Geers, M. G. D., Kouznetsova, V. G., Brekelmans, W. A. M., Multi-scale computational homogenization: Trends and challenges, J. Comput. Appl. Math.,  234(7), 2010, 2175-2182.
[14] Matouš, K., Geers, M. G. D., Kouznetsova, V. G., Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, J. Comput. Phys., 330, 2017, 192-220.
[15] Geers, M. G. D., Kouznetsova, V. G., Brekelmans, W. A. M., Computational homogenization, Springer, Vienna, 2010.
[16] Talebi, H., Silani, M., Bordas, S. P. A., Kerfriden, P., Rabczuk, T., A computational library for multiscale modeling of material failure, Comput. Mech., 53(5), 2014, 1047-1071.
[17] Budarapu, P. R., Gracie, R., Yang, S. W., Zhuang, X., Rabczuk, T., Efficient coarse graining in multiscale modeling of fracture, Theor. Appl. Fract. Mech., 69, 2014, 126-143.
[18] Fu, A., Chu-Chun, Torre, J. D. , Willaime, F. , Bocquet, J. L., Barbu, Multiscale modelling of defect kinetics in irradiated iron, Nat. Mater., 4, 2005, 68-74.
[19] Bruix, K. A. , Margraf, J. T. , Andersen, M. , Reuter, First-principles-based multiscale modelling of heterogeneous catalysis, Nat. Catal., 2, 2019, 659-670.
[20] Rubia, M. J., Diaz, T., Khraishi, T. A. , Wirth, B. D. , Victoria, M. , Caturla, Multiscale modelling of plastic flow localization in irradiated materials, Nature, 406, 2000, 871-874.
[21] Yip, M. P. S. , Short, Multiscale materials modelling at the mesoscale, Nat. Mater., 12, 2013, 774-777.
[22] Rabczuk, T., Gracie, R., Song, J., Belytschko, T., Immersed particle method for fluid – structure interaction, Int. J. Numer. Meth. Engng., 2010, 48-71.
[23] Mitchell, T. M., Machine Learning, McGraw-Hill, Inc. New York, 1997.
[24] Bishop, C. M., Pattern recognition and machine learning, Springer, 2006.
[25] Guo, H., Zhuang, X., Rabczuk, T., Guo, H., Zhuang, X., Rabczuk, T., A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate, Comput. Mater. Contin., 58(2), 2019, 433-456.
[26] Anitescu, C., Atroshchenko, E., Alajlan, N., Rabczuk, T., Anitescu, C., Atroshchenko, E., Alajlan, N., Rabczuk, T., Artificial Neural Network Methods for the Solution of Second Order Boundary Value Problems, Comput. Mater. Contin., 59(1), 2019, 345-359.
[27] Samaniego, E. et al., An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications, Comput. Methods Appl. Mech. Eng., 362, 2020,  112790.
[28] Rasmussen, C. E. and Williams, C. K. I., Gaussian processes for machine learning, MIT Press, 2006.
[29] Pedregosa, F. et al., Scikit-learn: Machine Learning in {P}ython, J. Mach. Learn. Res., 12, 2011, 2825-2830.
[30] Goodfellow, I., Bengio, Y., Courville, A., Deep Learning, MIT Press, 2016.
[31] McHutchon, A., Differentiating Gaussian Processes, 2013.
[32] Rogers, S. and Girolami, M., A First Course in Machine Learning, Taylor & Francis, 2011.
[33] Vassiliadis, S. G., Kallivretaki, A. E., Provatidis, C. G., Mechanical simulation of the plain weft knitted fabrics, Int. J. Cloth. Sci. Technol., 19(2), 2007, 109-130.
[34] Vassiliadis, S., Kallivretaki, A., Provatidis, C., Geometrical modelling of plain weft knitted fabrics, Indian J. Fibre Text. Res., 32, 2007, 62-71.
[35] Liu, Z., Bessa, M. A., Liu, W. K., Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials, Comput. Methods Appl. Mech. Eng., 306, 2016, 319-341.