Finite Element Modelling and Simulation of the Hysteretic ‎Behaviour of Single- and Bi-metal Cantilever Beams using a ‎Modified Non-linear Beta-damping Model

Document Type : Research Paper


1 Department of Mechanical and Aerospace Engineering, Nazarbayev University, Qabanbay Batyr 53, Nur-Sultan, 010000, Kazakhstan

2 Department of Mechanical and Aerospace Engineering, Nazarbayev University, Qabanbay Batyr 53, Nur-Sultan, 010000, Kazakhstan‎

3 Department of Civil and Environmental Engineering, Nazarbayev University, Qabanbay Batyr 53, Nur-Sultan, 010000, Kazakhstan


This paper explores a novel non-linear hysteresis model obtained from the modification of the conventional Kelvin-Voigt model, to produce a non-viscous hysteretic behaviour that is closer to metal damping. Two case studies are carried out for a vibrating cantilever beam under tip loading (bending), the first considering a single uniform material and the second considering a bimetallic structure. The damping behaviour is studied in the frequency domain (constant damping ratio model vs. Kelvin-Voigt/ beta damping model) and time-domain (proposed modified hysteresis model vs. Kelvin-Voigt/ beta damping model). In the frequency domain, it was found that the Kelvin-Voigt model essentially damps out the displacement response of the modes more than the constant damping ratio model does. In the transient analysis, the Kelvin-Voigt model likewise produced unnaturally rapid damping of the oscillations for both the single- and bi-metal beam, compared to the modified hysteretic damping model, which produced a damping behaviour closer to actual metal behaviour. This was consistent with results obtained in the frequency domain.


Main Subjects

‎[1]‎ Ding, Z., Li, L., Hu, Y., Li, X., Deng, W., State-space based time integration method for structural systems involving multiple nonviscous ‎damping models, Computers & Structures, 171, 2016, 31-45.‎
‎[2]‎ Chopra, A., Dynamics of Structures, 4th ed. Pearson, 2011.‎
‎[3]‎ Lakes, R., Materials with structural hierarchy, Nature, 361, 1993, 511–515.‎
‎[4]‎ Huang, Y., Sturt, R., Willford, M., A damping model for nonlinear dynamic analysis providing uniform damping over a frequency range, ‎Computers & Structures, 212, 2019, 101-109.‎
‎[5]‎ Lazan, B., Damping of materials and members in structural mechanics, Oxford Pergamon Press, New York, 1968.‎
‎[6]‎ Maia, N., Reflections on the Hysteretic Damping Model, Shock and Vibration, 16(5), 2009, 529-542.‎
‎[7]‎ Humar, J., Dynamics of Structures, 3rd ed. CRC Press, 2012.‎
‎[8]‎ Kimball, A., Lovell, D., Internal Friction in Solids, Physical Review, 30(6), 1927, 948-959.‎
‎[9]‎ Bishop, R., The Treatment of Damping Forces in Vibration Theory, The Journal of the Royal Aeronautical Society, 59, 1955, 738-742. ‎
‎[10]‎ Bishop, R., Johnson, D., The mechanics of vibration, Cambridge University Press, Cambridge, 1960. ‎
‎[11]‎ Caughey, T., Vibration of dynamic systems with linear hysteretic damping, ASME, New York 1962. ‎
‎[12]‎ Crandall, S., The role of damping in vibration theory, Journal of Sound and Vibration, 11(1), 1970, 3-18.‎
‎[13]‎ Reid, T., Free Vibration and Hysteretic Damping, The Journal of the Royal Aeronautical Society, 60(544), 1956, 283.‎
‎[14]‎ Fraijs, V., Influence of internal damping on aircraft resonance, AGARD, 1960.‎
‎[15]‎ Crandall, S., The Hysteretic Damping Model in Vibration Theory, Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering ‎Science, 205(1), 1991, 23-28.‎
‎[16]‎ Makris, N., Causal Hysteretic Element, Journal of Engineering Mechanics, 123(11), 1997, 1209-1214.‎
‎[17]‎ Adhikari, S., Wagner, N., Direct time-domain integration method for exponentially damped linear systems, Computers & Structures, 82(29-30), ‎‎2004, 2453-2461.‎
‎[18]‎ Cortés, F., Mateos, M., Elejabarrieta, M., A direct integration formulation for exponentially damped structural systems, Computers & Structures, ‎‎87(5-6), 2009, 391-394.‎
‎[19]‎ Adhikari, S., Damping models for structural vibration, PhD thesis, Cambridge University, 2000.‎
‎[20]‎ Soroushian, A., A General Rule for the Influence of Physical Damping on the Numerical Stability of Time Integration Analysis, Journal of Applied ‎and Computational Mechanics, 4(5), 2018, 467-481.‎
‎[21]‎ Inaudi, J., Kelly, J., Linear Hysteretic Damping and the Hilbert Transform, Journal of Engineering Mechanics, 121(5), 1995, 626-632.‎
‎[22]‎ Muravskii, G., On frequency independent damping, Journal of Sound and Vibration, 274, 2004, 653–668.‎
‎[23]‎ Muravskii, G., Linear models with nearly frequency independent complex stiffness leading to causal behavior in time domain, Earthquake ‎Engineering & Structure Dynamics, 33, 2006, 13–33.‎
‎[24]‎ Scanlan, R., Linear damping models and causality in vibrations, Journal of Sound and Vibration, 13(4), 1970, 499-503.‎
‎[25]‎ Sanliturk, K., Koruk, H., Development and validation of a composite finite element with damping capability, Composite Structures, 97, 2013, 136-‎‎146.‎
‎[26]‎ Cortés, F., Elejabarrieta, M., An approximate numerical method for the complex eigenproblem in systems characterised by a structural ‎damping matrix, Journal of Sound and Vibration, 296(1-2), 2006, 166-182.‎
‎[27]‎ Zhang, S., Chen, H., A study on the damping characteristics of laminated composites with integral viscoelastic layers, Composite Structures, ‎‎74(1), 2006, 63-69.‎
‎[28]‎ Cortés, F., Elejabarrieta, M., Structural vibration of flexural beams with thick unconstrained layer damping, International Journal of Solids and ‎Structures, 45(22-23), 2008, 5805-5813.‎
‎[29]‎ Rao, M., Echempati, R., Nadella, S., Dynamic analysis and damping of composite structures embedded with viscoelastic layers, Composites Part ‎B: Engineering, 28(5-6), 1997, 547-554.‎
‎[30]‎ Zhang, S., Chen, H., A study on the damping characteristics of laminated composites with integral viscoelastic layers, Composite Structures, ‎‎74(1), 2006, 63-69.‎
‎[31]‎ Plagianakos, T., Saravanos, D., Mechanics and finite elements for the damped dynamic characteristics of curvilinear laminates and composite ‎shell structures, Journal of Sound and Vibration, 263(2), 2003, 399-414.‎
‎[32]‎ Spitas, C., Dwaikat, MMS., Spitas, V., Non-linear modelling of elastic hysteretic damping in the time domain, Archives of Mechanics, 72(4), 2020, ‎Rayleigh, L., Theory of Sound , Dover Publications, New York, 1945.‎
‎[33]‎ Foss, K., Coordinates Which Uncouple the Equations of Motion in Damped Linear Dynamic Systems, Journal of Applied Mechanics, 25, 1958, 361-‎‎364.‎
‎[34]‎ Johnson, C., Kienholzt, D., Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers, AIAA Journal, 20(9), 1982, ‎‎1284-1290.‎
‎[35]‎ Hoser, M., Boswald, M., Govers, Y., Validating Global Structural Damping Models for Dynamic Analyses, Deutscher Luft- und Raumfahrtkongress, ‎‎2015, 1-10.‎
‎[36]‎ Rittweger, A., Dieker, S., Abdoly, K., Albus, J., Coupled Dynamic Load Analysis with different Component Damping of the Substructures, ‎International Astronautical Congress, 2008.‎
‎[37]‎ Neumark, S., Concept of complex Stiffness Applied to Problems of Oscillation with Viscous and Hysteretic Damping, Aeronautical Research ‎Council R&M, 1962.‎
‎[38]‎ Küssner, H., Schwingungen von flugzeugflügeln, Jahrbuch der Deutscher Versuchsanstalt für Luftfahrt, 1929, 319-320.‎
‎[39]‎ Küssner, H., Augenblicklicher Entwicklungsstand der Frage des Flugelflatterns, Luftfahrtforschung, 12, 1935, 193. ‎
‎[40]‎ Bishop, R., The general theory of hysteretic damping, The Aeronautical Quarterly, 7(1), 1956, 60-70.‎
‎[41]‎ ANSYS, Theory Reference for the Mechanical APDL and Mechanical Applications, ANSYS, 2009, 897-899.‎