WaveMIMO Methodology: Numerical Wave Generation of a ‎Realistic Sea State‎

Document Type : Research Paper

Authors

1 Federal University of Rio Grande do Sul (UFRGS), Interdisciplinary Department, 030 Highway, km 92, Tramandaí, 95590-000, Brazil‎

2 Federal University of Rio Grande (FURG), School of Engineering, km 8 Itália Avenue, Rio Grande, 96201-900, Brazil‎

3 Federal University of Paraná (IFPR), Center for Marine Studies, Beira-Mar Avenue, Pontal do Paraná, 83255-976, Brazil‎

4 University of Vale do Rio dos Sinos (UNISINOS), Polytechnic School, 950 Unisinos Avenue, São Leopoldo, 93022-750, Brazil‎

5 Federal Institute of Paraná (IFPR), Campus Paranaguá, 453 Antonio Carlos Rodrigues Street, Paranaguá, 83215-750, Brazil

6 NOVA University of Lisbon (UNL), NOVA School of Science and Technology, Lisbon, 1099-085, Portugal

Abstract

This paper presents a methodology that allows the numerical simulation of realistic sea waves, called WaveMIMO methodology, which is based on the imposition of transient discrete data as prescribed velocity on a finite volume computational model developed in Fluent software. These transient data are obtained by using the spectral wave model TOMAWAC, where the wave spectrum is converted into a series of free surface elevations treated and processed as wave propagation velocities in the horizontal (x) and vertical (z) directions. The processed discrete transient data of wave propagation velocity are imposed as boundary conditions of a wave channel in Fluent, allowing the numerical simulation of irregular waves with realistic characteristics. From a case study that reproduces the sea state occurring on March 31st, 2014, in Ingleses Beach, in the city of Florianópolis, state of Santa Catarina, Brazil, it was concluded that the WaveMIMO methodology can properly reproduce realistic conditions of a sea state. In sequence, the proposed methodology was employed to numerically simulate the incidence of irregular realistic waves over an oscillating water column (OWC) wave energy converter (WEC). From these results, the WaveMIMO methodology has proved to be a promising technique to numerically analyze the fluid-dynamic behavior of WECs subjected to irregular waves of realistic sea state on any coastal region where the device can be installed.

Keywords

Main Subjects

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[1] Pecher, A., Kofoed, J. P., Handbook of Ocean Wave Energy, Springer International Publishing, 2017. DOI: 10.1007/978-3-319-39889-1.
[2] Mørk, G., Barstow, S., Kabuth, A., Pontes, M. T., Assessing the global wave energy potential, 29th International Conference on Ocean, Offshore Mechanics and Arctic Engineering, Shangai, 2010.
[3] IEA, International Energy Agency, Available at http://www.iea.org, 2020.
[4] WEC, World Energy Resources 2016, Technical Report, World Energy Council, 2016. URL: https://www.worldenergy.org/publications/entry/world-energy-resources-2016.
[5] Cornett, A. M., A Global Wave Energy Resource Assessment, Proceedings of ISOPE, v. 8, 2008, p. 9.
[6] Dean, R. G., Dalrymple, R. A., Water Wave Mechanics for Engineers & Scientists, World Scientific, 1991.
[7] Barstow, S., Mørk, G., Mollison, D., Cruz, J., The wave energy resource, Green Energy and Technology (Virtual Series), Springer Berlin Heidelberg, 2008, p. 93–132. DOI: 10.1007/978-3-540-74895-3_4.
[8] Lewis, A., Estefen, S., Huckerby, J., Lee, K. S., Musial, W., Pontes, T., Torres-Martinez, J., Bharathan, D., Hanson, H., Heath, G., Louis, F., Scråmestø, S. Ø., Abdulla, A., Moreno, J. M., You, Y., Ocean energy, in: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlomer, S., Von Stechow, C.  (Eds.), Renewable Energy Sources and Climate Change Mitigation, Cambridge University Press, 2011, 497–534. DOI: 10.1017/cbo9781139151153.010.
[9] Chozas, J. F., Soerensen, H. C., State of the art of wave energy in Spain, 2009 IEEE Electrical Power & Energy Conference (EPEC), IEEE, 2009. DOI: 10.1109/epec.2009.5420989.
[10] Son, D., Belissen, V., Yeung, R. W., Performance validation and optimization of a dual coaxial-cylinder ocean-wave energy extractor, Renewable Energy, 92, 2016, 192201. DOI: 10.1016/j.renene.2016.01.032.
[11] Garcia, N., Lara, J., Losada, I., 2-d numerical analysis of near-field flow at low-crested permeable breakwaters, Coastal Engineering, 51, 2004, 991–1020. DOI: 10.1016/j.coastaleng.2004.07.017.
[12] Jeong, K.-L., Lee, Y.-G., A numerical simulation method for the flow around floating bodies in regular waves using a three-dimensional rectilinear grid system, International Journal of Naval Architecture and Ocean Engineering, 8, 2016, 277–300. DOI: 10.1016/j.ijnaoe.2016.03.007.
[13] Zabihi, M., Mazaheri, S., Rezaee Mazyak, A., Wave Generation in a Numerical Wave Tank, International Journal of Coastal and Offshore Engineering, 5, 2017, 25–35. URL: http://ijcoe.org/article-1-89-en.html.
[14] Machado, B. N., Kisner, E. V., Paiva, M. S., Gomes, M. N., Rocha, L. A. O., Marques, W. C., Dos Santos, E. D., Isoldi, L. A., Numerical Generation of Regular Waves Using Discrete Analytical Data as Boundary Condition of Prescribed Velocity, XXXVIII Iberian Latin American Congress on Computational Methods in Engineering, ABMEC Brazilian Association of Computational Methods in Engineering, 2017. DOI: 10.20906/cps/cilamce2017-0816.
[15] Conde, J., Condeço, M., Numerical simulation of an oscillating water column (OWC) wave energy converter (WEC) on a breakwater using OpenFOAM, Defect and Diffusion Forum, 396, 2019, 12–21. DOI: 10.4028/www.scientific.net/ddf.396.12.
[16] Liu, Z., Hyun, B.-S., Jin, J., Numerical prediction for overtopping performance of OWEC, OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean, IEEE, 2008. DOI: 10.1109/oceanskobe.2008.4531009.
[17] Dos Santos, E. D., Machado, B. N., Zanella, M. M., Gomes, M. N., Souza, J. A., Isoldi, L. A., Rocha, L. A. O., Numerical Study of the Effect of the Relative Depth on the Overtopping Wave Energy Converters According to Constructal Design, Defect and Diffusion Forum, 348, 2014, 232-244. DOI:  https://doi.org/10.4028/www.scientific.net/DDF.348.232
[18] Martins, J., Goulart, M., Gomes, M. N., Souza, J., Rocha, L. A. O., Isoldi, L. A., Dos Santos, E. D., Geometric evaluation of the main operational principle of an overtopping wave energy converter by means of constructal design, Renewable Energy, 118, 2018, 727–741. DOI: 10.1016/j.renene.2017.11.061.
[19] Han, Z., Liu, Z., Shi, H., Numerical study on overtopping performance of a multi-level breakwater for wave energy conversion, Ocean Engineering, 150, 2018, 94–101. DOI: 10.1016/j.oceaneng.2017.12.058.
[20] Barbosa, D. V. E., Santos, A. L. G., Dos Santos, E. D., Souza, J., Overtopping device numerical study: Openfoam solution verification and evaluation of curved ramps performances, International Journal of Heat and Mass Transfer, 131, 2019, 411 – 423. DOI: 10.1016/j.ijheatmasstransfer.2018.11.071.
[21] Wan, Z., Yao, Z., Song, T., Chen, J., Hydrodynamic characteristics of the multi-level overtopping wave power device, Journal of Low Frequency Noise, Vibration and Active Control, 38, 2018, 1314–1326. DOI: 10.1177/1461348418813745.
[22] Horko, M., CFD optimisation of an oscillating water column wave energy converter, Master’s thesis, University of Western Australia, 2007.
[23] Elhanafi, A., Prediction of regular wave loads on a fixed offshore oscillating water column-wave energy converter using CFD, Journal of Ocean Engineering and Science, 1, 2016, 268–283. URL: DOI: 10.1016/j.joes.2016.08.001.
[24] Gomes, M. N., Lorenzini, G., Rocha, L. A. O., Dos Santos, E. D., Isoldi, L. A., Constructal design applied to the geometric evaluation of an oscillating water column wave energy converter considering different real scale wave periods, Journal of Engineering Thermophysics, 27, 2018, 173–190. DOI: 10.1134/s1810232818020042.
[25] Michele, S., Renzi, E., Perez-Collazo, C., Greaves, D., Iglesias, G., Power extraction in regular and random waves from an OWC in hybrid wind-wave energy systems, Ocean Engineering, 191, 2019, 106519. DOI: 10.1016/j.oceaneng.2019.106519.
[26] Gaspar, L. A., Teixeira, P. R., Didier, E., Numerical analysis of the performance of two onshore oscillating water column wave energy converters at different chamber wall slopes, Ocean Engineering, 201, 2020, 107119. DOI: 10.1016/j.oceaneng.2020.107119.
[27] Howe, D., Nader, J.-R., Macfarlane, G., Performance analysis of a floating breakwater integrated with multiple oscillating water column wave energy converters in regular and irregular seas, Applied Ocean Research, 99, 2020, 102147. DOI: 10.1016/j.apor.2020.102147.
[28] Seibt, F. M., Couto, E. C., Dos Santos, E. D., Isoldi, L. A., Rocha, L. A. O., Teixeira, P. R. F., Numerical study on the effect of submerged depth on the horizontal plate wave energy converter, China Ocean Engineering, 28, 2014, 687–700. DOI: 10.1007/s13344-014-0056-x.
[29] Carmigniani, R., Leroy, A., Violeau, D., A simple SPH model of a free surface water wave pump: waves above a submerged plate, Coastal Engineering Journal, 61, 2019, 96–108. DOI: 10.1080/21664250.2018.1560923.
[30] He, M., Gao, X., Xu, W., Ren, B., Wang, H., Potential application of submerged horizontal plate as a wave energy breakwater: a 2d study using the WCSPH method, Ocean Engineering, 185, 2019, 27–46. DOI: 10.1016/j.oceaneng.2019.05.034.
[31] Kharati-Koopaee, M., Kiali-Kooshkghazi, M., Assessment of plate-length effect on the performance of the horizontal plate wave energy converter, Journal of Waterway Port Coastal and Ocean Engineering, 145, 2019, 04018037. DOI: 10.1061/(ASCE)WW.1943-5460.0000498
[32] Seibt, F. M., Camargo, F. V., Dos Santos, E. D., Neves, G. M., Rocha, L. A. O., Isoldi, L. A., Fragassa, , Numerical evaluation on the efficiency of the submerged horizontal plate type wave energy converter, FME Transactions, 47, 2019, 543–551. DOI: 10.5937/fmet1903543S.
[33] Pierson Jr., W. J., Moskowitz, L., A proposed spectral form for Fully Developed Wind Seas based on the similarity theory of S. A. Kitaigorodskii, Technical Report, School of Engineering and Science, New York, 1963.
[34] Weber, J.W., Thomas, G. P., An Investigation into the Importance of the Air Chamber Design of an Oscillating Water Column Wave Energy Device, International Society of Offshore and Polar Engineers, ISOPE, 2001.
[35] Ferguson, T. M., Penesis, I., Macfarlane, G., Fleming, A., A PIV investigation of OWC operation in regular, polychromatic and irregular waves, Renewable Energy, 103, 2017, 143–155. DOI: 10.1016/j.renene.2016.11.019.
[36] Gomes, M. N., De Deus, M. J., Dos Santos, E. D., Isoldi, L. A., Analysis of the geometric constraints employed in constructal design for oscillating water column devices submitted to the wave spectrum through a numerical approach, Defect and Diffusion Forum, 390, 2019, 193–210. DOI: 10.4028/www.scientific.net/ddf.390.193.
[37] Maliki, Y., Musa, A., Ahmad, M., Zamri, I., Omar, Y., Comparison of numerical and experimental results for overtopping discharge of the OBREC wave energy converter, Journal of Engineering Science and Technology, 12, 2017, 1337–1353.
[38] Zhang, X., Yang, J., Power capture performance of an oscillating-body WEC with nonlinear snap through PTO systems in irregular waves, Applied Ocean Research, 52, 2015, 261–273. DOI: 10.1016/j.apor.2015.06.012.
[39] Xu, D., Stuhlmeier, R., Stiassnie, M., Assessing the size of a twin-cylinder wave energy converter designed for real sea-states, Ocean Engineering, 147, 2018, 243– 255. DOI: 10.1016/j.oceaneng.2017.10.012.
[40] Tay, Z. Y., Energy extraction from an articulated plate anti-motion device of a very large floating structure under irregular waves, Renewable Energy, 130, 2019, 206–222. DOI: 10.1016/j.renene.2018.06.044.
[41] Beatty, S. J., Bocking, B., Bubbar, K., Buckham, B. J., Wild, P., Experimental and numerical comparisons of self-reacting point absorber wave energy converters in irregular waves, Ocean Engineering, 173, 2019, 716–731. DOI: 10.1016/j.oceaneng.2019.01.034.
[42] Dos Reis, M. T. L. G. V., Poseiro, P. G. G., Fortes, C. J. E. M., Conde, J. M. P., Didier, E. L., Sabino, A. M. G., Grueau, M. A. S. R., Risk management in maritime structures, Proceedings of the Eighth International Conference on Management Science and Engineering Management, Springer Berlin Heidelberg, 2014, 1179–1190. DOI: 10.1007/978-3-642-55122-2_102.
[43] Finnegan, W., Goggins, J., Linear irregular wave generation in a numerical wave tank, Applied Ocean Research, 52, 2015, 188–200. DOI: 10.1016/j.apor.2015.06.006.
[44] Wang, L., Li, J., Li, S., Numerical simulation of freak wave generation in irregular wave train, Journal of Applied Mathematics and Physics, 03, 2015, 1044–1050. DOI: 10.4236/jamp.2015.38129.
[45] Lisboa, R. C., Teixeira, P. R. F., Didier, E., Simulação da Propagação de Ondas Regulares e Irregulares em um Canal Bidimensional com Praia Numérica, Anais do VII SEMENGO, Rio Grande, 2016, 258–266.
[46] Thompson, D. A., Karunarathna, H., Reeve, D., Comparison between wave generation methods for numerical simulation of bimodal seas, Water Science and Engineering, 9, 2016, 3–13. DOI: 10.1016/j.wse.2016.02.005.
[47] Mendonça, A., Dias, J., Didier, E., Fortes, C., Neves, M., Reis, M., Conde, J., Poseiro, P., Teixeira, P. An integrated tool for modelling oscillating water column (OWC) wave energy converters (WEC) in vertical breakwaters, Journal of Hydro-environment Research, 19, 2018, 198–213. DOI: 10.1016/j.jher.2017.10.007.
[48] Mutsuda, H., Kanehira, T., Kawawaki, K., Doi, Y., Yasukawa, H., Occurrence of stern slamming pressure and its characteristics in following irregular waves, Ocean Engineering, 170, 2018, 222–236. DOI: 10.1016/j.oceaneng.2018.10.018.
[49] Chen, W., Dolguntseva, I., Savin, A., Zhang, Y., Li, W., Svensson, O., Leijon, M., Numerical modelling of a point-absorbing wave energy converter in irregular and extreme waves, Applied Ocean Research, 63, 2017, 90–105. DOI: 10.1016/j.apor.2017.01.004.
[50] Ransley, E., Greaves, D., Raby, A., Simmonds, D., Hann, M., Survivability of wave energy converters using CFD, Renewable Energy, 109, 2017, 235–247. DOI: 10.1016/j.renene.2017.03.003.
[51] Romanowski, A., Tezdogan, T., Turan, O., Development of a CFD methodology for the numerical simulation of irregular sea-states, Ocean Engineering, 192, 2019, 106530. DOI: 10.1016/j.oceaneng.2019.106530.
[52] Jacobsen, N. G., Fuhrman, D. R., Fredsøe, J., A wave generation toolbox for the opensource CFD library: OpenFoam®, International Journal for Numerical Methods in Fluids, 70, 2011, 1073–1088. DOI: 10.1002/fld.2726.
[53] Higuera, P., Lara, J. L., Losada, I. J., Simulating coastal engineering processes with OpenFOAM®, Coastal Engineering, 71, 2013, 119–134. DOI: 10.1016/j.coastaleng.2012.06.002.
[54] Higuera, P., Lara, J. L., Losada, I. J., Realistic wave generation and active wave absorption for Navier–stokes models, Coastal Engineering, 71, 2013, 102–118. DOI: 10.1016/j.coastaleng.2012.07.002.
[55] Shen, Z.-R., Ye, H.-X., Wan, D.-C., URANS simulations of ship motion responses in long-crest irregular waves, Journal of Hydrodynamics, 26, 2014, 436–446. DOI: 10.1016/s1001-6058(14)60050-0.
[56] Shen, Z.-R., Wan, D.-C., An irregular wave generating approach based on naoe-FOAM-SJTU solver, China Ocean Engineering, 30, 2016, 177–192. DOI: 10.1007/s13344-016-0010-1.
[57] ANSYS, ANSYS Help System, ANSYS, Inc., 2019.
[58] Lisboa, R. C., Teixeira, P. R., Didier, E., Regular and irregular wave propagation analysis in a flume with numerical beach using a navier-stokes based model, Defect and Diffusion Forum, 372, 2017, 81–90. DOI: 10.4028/www.scientific.net/ddf.372.81.
[59] Gatin, I., Vukˇcevi´c, V., Jasak, H., A framework for efficient irregular wave simulations using higher order spectral method coupled with viscous two phase model, Journal of Ocean Engineering and Science, 2, 2017, 253–267. DOI: 10.1016/j.joes.2017.09.003.
[60] Choi, Y., Bouscasse, B., Seng, S., Ducrozet, G., Gentaz, L., Ferrant, P., Generation of regular and irregular waves in navier-stokes CFD solvers by matching with the nonlinear potential wave solution at the boundaries, in: Volume 2: CFD and FSI, American Society of Mechanical Engineers, 2018. DOI: 10.1115/omae2018-78077.
[61] Miquel, A., Kamath, A., Chella, M. A., Archetti, R., Bihs, H., Analysis of different methods for wave generation and absorption in a CFD-based numerical wave tank, Journal of Marine Science and Engineering, 6, 2018, 73. DOI: 10.3390/jmse6020073.
[62] Benoit, M., Marcos, F., Becq, F., Development of a Third Generation Shallow-Water Wave Model with unstructured spatial meshing, 25th International Conference on Coastal Engineering: Book of Abstracts, American Society of Civil Engineers, New York, 1996, pp. 465–478.
[63] T. Awk, TOMAWAC User Manual Version 7.2, 7.2.3 ed., The TELEMAC-Mascaret Consortium, 2017. URL: www.opentelemac.org.
[64] H. L. Tolman, User manual and system documentation of WAVEWATCH III version 3.14, Technical Report, National Oceanic and Atmospheric Administration, Washington D.C., 2009.
[65] Kalnay, E., Kanamitsu, M.,  Kistler, R., Collins, W.,  Deaven, D., Gandin, L., Iredell, M., Saha, S.,  White, G.,  Woollen, J.,  Zhu, Y.,  Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C.,  Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., Joseph, D., The NCEP/NCAR 40-Year Reanalysis Project, Bulletin of the American Meteorological Society, 77, 1996, 437–472. DOI: 10.1175/1520-0477(1996)077.
[66] Hirt, C., Nichols, B., Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, 39, 1981, 201–225. DOI: 10.1016/0021-9991(81)90145-5.
[67] Versteeg, H. K., Malalasekera, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Prentice Hall, 2007.
[68] V. Srinivasan, A. J. Salazar, K. Saito, Modeling the disintegration of modulated liquid jets using volume-of-fluid (VOF) methodology, Applied Mathematical Modelling, 35, 2011, 3710–3730. DOI: 10.1016/j.apm.2011.01.040.
[69] ANSYS, ANSYS Fluent Tutorial Guide, ANSYS, Inc., 2017.
[70] Chen, X. B., Zhan, J. M., Chen, Q., Numerical simulations of 2-d floating body driven by regular waves, Journal of Hydrodynamics, 28, 2016, 821–831. DOI: 10.1016/s1001-6058(16)60682-0.
[71] Yamaç, H. I., Koca, A., Shore type effect on onshore wave energy converter performance, Ocean Engineering, 190, 2019, 106494. DOI: 10.1016/j.oceaneng.2019.106494.
[72] Zwart, P., Godin, P., Penrose, J., Rhee, S., Ship hull simulations with a coupled solution algorithm, 2, 2007, 989–996.
[73] Park, J.-C., Kim, M.-H., Miyata, H., Fully non-linear free-surface simulations by a 3d viscous numerical wave tank, International Journal for Numerical Methods in Fluids, 29, 1999, 685–703. DOI: 10.1002/(sici)1097-0363(19990330)29:6.
[74] Foyhirun, C., Kositgittiwong, D., Ekkawatpanit, C., Wave energy potential and simulation on the Andaman sea coast of Thailand, Sustainability, 12, 2020, 3657. DOI: 10.3390/su12093657.
[75] Oleinik, P. H., Marques, W. C., Kirinus, E. P., Estimate of the wave climate on the most energetic locations of the south-southeastern Brazilian shelf, Defect and Diffusion Forum, 370, 2017, 130–140. DOI: 10.4028/www.scientific.net/ddf.370.130.
[76] Wessel, P., Smith, W. H. F., A Global Self-consistent, Hierarchical, High-resolution Geography Database, Journal of Geophysical Research, 101, 1996, 8741–8743.
[77] Holthuijsen, L. H., Waves in Oceanic and Coastal Waters, 1 ed., Cambridge University Press, Cambridge, 2007.
[78] Airy, G. B., Tides and Waves, Encyclopædia Metropolitana, 1845, 241–396.
[79] Beji, S., Improved explicit approximation of linear dispersion relationship for gravity waves, Coastal Engineering, 73, 2013, 11–12. DOI: 10.1016/j.coastaleng.2012.10.002.
[80] Eckart, C, The Propagation of Gravity Waves form Deep to Shallow Water, Proceedings of the NBS Semicentennial Symposium on Gravity Waves, 521, National Bureau of Standards, 1952.
[81] Dos Santos, E. D., Machado, B. N., Lopes, N., Souza, J., Teixeira, P. R. F., Gomes, M. N., Isoldi, L. A., Rocha, L. A. O. Constructal design of wave energy converters, Understanding Complex Systems, Springer New York, 2012, 275–294. DOI: 10.1007/978-1-4614-5049-8_16.
[82] Janssen, P. A. E. M., Hansen, B.  Bidlot, J.-R., Verification of the ECMWF Wave Forecasting System against Buoy and Altimeter Data, American Meteorological Society, 12, 1997, 763–784.
[83] Lalbeharry, R., Evaluation of the CMC regional wave forecasting system against buoy data, Atmosphere-Ocean, 40, 2002, 1–20.
[84] Melo, E., Hammes, G. R., Franco, D., Romeu, M. A. R., Avaliação de desempenho do modelo WW3 em Santa Catarina, Anais do III SEMENGO: Seminario e Workshop em Engenharia Oceânica, Rio Grande, 2008.
[85] Chawla, A., Spindler, D. M., Tolman, H. L., Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds, Ocean Modelling, 70, 2013, 189–206.
[86] Oleinik, P., Kirinus, E. P., Fragassa, C., Marques, W., Costi, J., Energetic potential assessment of wind-driven waves on the south-southeastern brazilian shelf, Journal of Marine Science and Engineering, 7, 2019, 25. DOI: 10.3390/jmse7020025.
[87] Mavriplis, D. J., Unstructured Mesh Generation and Adaptivity, 26th Computational Fluid Dynamics Lecture Series, von Karman Institute for Fluid Dynamics, 1995. URL: https://apps.dtic.mil/dtic/tr/fulltext/u2/a294551.pdf.
[88] Gomes, M. N., Isoldi, L. A., Dos Santos, E. D., Rocha, L. A. O., Análise de malhas para geração numérica de ondas em tanques, Anais do VII Congresso Nacional de Engenharia Mecânica, Associação Brasileira de Engenharia e Ciências Mecânicas, 2012. URL: http://repositorio.furg.br/handle/1/4995.
[89] Goulart, M. M., Gomes, A. P., Rocha, L. A. O., Dos Santos, E. D., Isoldi, L. A., Martins, J. C., Gomes, M. N., Verificação e validação de um modelo numérico para abordagem do escoamento em um canal de ondas, Cereus, 10, 2018, 226–239. DOI: 10.18605/2175-7275/cereus.v10n4p226-239.
[90] Frigo, M., Johnson, S. G., The design and implementation of FFTW3, Proceedings of the IEEE 93, 2005, 216–231. Special issue on Program Generation, Optimization, and Platform Adaptation, 2004. DOI: 10.1109/JPROC.2004.840301.
[91] Joule III - Non Nuclear Energy Programme, European Wave Energy Pilot Plant on the Island of Pico, Azores, Portugal - Phase two: Equipment. Publishable Report, The European Commission, 1998. Available in: https://cordis.europa.eu/docs/publications/4769/47698021-6_en.pdf
[92] Falcão, A. F. O., Sarmento, A. J. N. A., Gato, L. M. C., Brito-Melob, A., The Pico OWC wave power plant: Its lifetime from conception to closure 1986–2018, Applied Ocean Research, 98, 2020, 102104. DOI: 10.1016/j.apor.2020.102104.
[93] Dizadji, N., Sajadian, S. E., Modeling and Optimization of the Chamber of OWC System, Energy, 36, 2011, 2360–2366. DOI: 10.1016/j.energy.2011.01.010.