Direct Transcription Approach to Dynamic Optimization Problems in Engineering

Document Type : Research Paper


Polytechnic Department of Engineering and Architecture, University of Udine,‎ Via delle Scienze 206, Udine, 33100 UD, Italy‎


The direct transcription method that employs global collocation at Legendre-Gauss-Radau points is addressed and applied to infinite-dimensional dynamic optimization problems in engineering. The formulation of these latter is considered referring to a Bolza-type performance index. A reduced unconstrained form of it is particularly studied in the pseudospectral domain and the continuous-to-discrete conversion is thoroughly discussed. An equivalent finite-dimension nonlinear programming problem is therefore obtained and hints on its numerical implementation are given. Eventually, a few benchmark historical problems in engineering are revisited, stated, numerically solved and compared to literature.


Main Subjects

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[1] Rao, A.V., A survey of numerical methods for optimal control, AAS/AIAA Astrodynamics Specialist Conference, Pittsburgh, USA, AAS 09-334, 2009.
[2] Stoer, J., Burlisch, R., Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.
[3] Grimm, W., Markl, A., Adjoint estimamtion from a multiple shooting method, Journal of Optimization Theory and Applications, 26, 2003, 185-189.
[4] Sagliano, M., Theil, S., Bergsma, M., D'Onofrio, V., Whittle, L., Viavattene, G., On the Radau pseudospectral method: theoretical and implementation advances, CEAS Space Journal, 9, 2017, 313-331.
[5] Vlassebroeck, J., Dooren, R.V.A., Chebyshev technique for solving nonlinear optimal control problems, IEEE Transactions on Automatic Control, 33(4), 1988, 333-340.
[6] Rao, A.V., Benson, D.A., Darby, C., Patterson, M.A., Francolin, C., Sanders, I., Huntington, G.T., Algorithm 902: GPOPS, a MATLAB software for solving multiphase optimal control problems using the Gauss pseudospectral method, ACM Transactions on Mathematical Software, 37(2), 2010, 1-39.
[7] Elnagar, G., Kazemi, M., Razzaghi, M., The pseudospectral Legendre method for discretizing optimal control problems, IEEE Transactions on Automatic Control, 40(10), 1995, 1793-1796.
[8] Garg, D., Patterson, M.A., Darby, C., Francolin, C., Huntington, G.T., Hager, W.W., Rao, A.V., Direct trajectory optimization and costate estimation of finite horizon and infinite horizon optimal control problems using a Radau pseudospectral method, Computational Optimization and Applications, 49, 2001, 335-358
[9] Garg, D., Advances in global pseudospectral methods for optimal control, Ph.D. Thesis, Department of Mechanical and Aerospace Engineering, University of Florida, Florida, FL, 2011.
[10] Vlassenbroeck, J. A., Chebyshev polynomial method for optimal control with state constraints, Automatica, 24(4), 1988, 499-506.
[11] Cichella, V., Kaminer, I., Walton, C., Hovakimyan, N., Pascoal, A.M., Consistent approximation of optimal control problems using Bernstein polynomials, 58th Conference on Decision and Control (CDC), Nice, France, 4292-4297, 2019.
[12] Cizniar, M., Salhi, D., Fikar, M., Latifi, M.A., A MATLAB package for orthogonal collocations on finite elements in dynamic optimisation, 15th International Conference Process Control, Strbske Pleso, Slovakia, 2005.
[13] Wang, Y., Zhu, Y., Jiang, X., Li, S., Comparison of LPM, GPM and RPM for Optimization of Low-Thrust Earth-Mars Rendezvous Trajectories, IEEE Chinese Guidance, Navigation and Control Conference, Yantai, China, 2014.
[14] Biegler, L.T., An overview of simultaneous strategies for dynamic optimization, Chemical Engineering and Processing, 46(11), 2007, 1043-1053.
[15] Trelat, E., Optimal Control and Applications to Aerospace: Some Results and Challenges, Journal of Optimization Theory and Applications, 154, 2012, 713-758.
[16] Biral, F., Bertolazzi, E., Bosetti, P. Notes on numerical methods for solving optimal control problems, IEEE Journal of Industry Applications, 5(2), 2016,154-166.
[17] Conway, B.A., A Survey of Methods Available for the Numerical Optimization of Continuous Dynamic Systems, Journal of Optimization Theory and Applications, 152, 2012, 271-306.
[18] Hildebrand, F.B., Introduction to Numerical Analysis, Dover Publications, New York, 1987.
[19] Abramowitz, M., Stegun, I., Handbook of mathematical functions with formulas, graphs and mathematical tables, Dover Publications, New York, 1965.
[20] Bliss, G.A., Lectures on the calculus of variations, Chicago University Press, Chicago, 1947.
[21] Garg, D., Patterson, M.A., Darby, C.L., Francolin, C., Huntington, G.T., Hager, W.W., Rao, A.V., Direct Trajectory Optimization and Costate Estimation of Finite-Horizon and Infinite-Horizon Optimal Control Problems Using a Radau Pseudospectral Method, Computational Optimization and Applications 49(2), 2011, 335-358.
[22] Fahroo, F., Ross, I. M., Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems, Journal of Guidance, Control, and Dynamics, 31(4), 2008, 927-936.
[23] Ross, I.M., Fahroo, F., Convergence of the Costates Does Not Imply Convergence of the Controls, Journal of Guidance, Control, and Dynamics, 31(5), 2008, 1492-1496.
[24] Benson, D.A., A Gauss pseudospectral transcription for optimal control, Ph.D. Thesis, Department of Aeronautics and Astronautics, MIT, Cambridge, MA, 2004.
[25] Bhati, M.A., Practical Optimization Methods with Mathematica Applications, Springer Verlag, New York, 2000.
[26] Polak, E., Computational Methods in Optimization, Academic Press, New York, 1971.
[27] Nocedal, J., Wright, S.J., Numerical Optimization, Springer, New York, 2006.
[28] Gill, P.E., Murray, W., Wright, M.H., Numerical Linear Algebra and Optimization-Volume 1, Addison Wesley, Boston, 1991.
[29] Boggs, P., Tolle, J.W., Sequential Quadratic Programming, Acta Numerica, 4(4), 1996, 1-51.
[30] Biggs, M.C., Recursive quadratic programming methods based on the augmented lagrangian, Computation Mathematical Programming, 31, 2009, 21-41.
[31] Williams, P., Hermite-Legendre-Gauss-Lobatto direct transcription in trajectory optimization, Journal of Guidance, Control, and Dynamics, 32(4), 2009, 1392-1395.
[32] Chandrasekhar, S., Newton's Principia for the common reader, Oxford University Press, London, 1995.
[33] Miele, A., Theory of optimum aerodynamic shapes, Academic Press, New York, 1965.
[34] Vujanovic, B.D., Atanackovic, T.M., An introduction to modern variational techniques in mechanics and engineering, Springer Science+Business Media, New York, 2004.
[35] Rao, S.S., Engineering optimization. Theory and practice, John Wiley & Sons, New Jersey, 2009.
[36] Clausen, T., Uber die form architektonischer Saulen, Bulletin de la Classe physico-mathématique de l'Académie impériale des sciences de Saint-Pétersbourg, 9, 1851, 369-380.
[37] Barnes, D.C., Buckling of columns and rearrangements of functions, Quarterly Journal of Applied Mathematics, 41, 1983, 169-180.
[38] Cox, S.J., Overton, M.L., On the optimal design of columns against buckling, SIAM Journal of Mathematical Analysis, 23(2), 1992, 287-325.
[39] Seyranian, A.P., A solution of a problem of Lagrange, Soviet Physics-Doklady, 28(7), 1983, 550-551.
[40] Spasic, D., Stability of a compressed and twisted linearly-elastic rod, Ph.D. Thesis, Department of Mechanics, University of Novi Sad, Novi Sad, NS, 1993.
[41] Aris, R., Amundson, N.R., An analysis of chemical reactor stability and control-II: The evolution of proportional control, Chemical Engineering Science, 7(3), 1958, 132-147.
[42] Luus, R., Lapidus, R., The Control of Nonlinear Systems. Part II: Convergence by Combined First and Second Variations, American Institute of Chemical Engineers Journal, 13(1), 1967, 108-113.
[43] Kirk, D.E., Optimal control theory: An introduction, Dover Publications, New York, 1970.
[44] Chen, T.W.C., Vassiliadis, V.S., Inequality path constraints in optimal control: A finite iteration e-convergent scheme based on pointwise discretization, Journal of Process Control, 15(3), 2005, 353-362.
[45] Fu, J., Faust, J.M.M., Chachuat, B., Mitsos, A., Local optimization of dynamic programs with guaranteed satisfaction of path constraints, Automatica, 62, 2015, 184-192.
[46] Wang, L., Yang, G., Li, Z., Xu, F., An efficient nonlinear interval uncertain optimization method using Legendre polynomial chaos expansion, Applied Soft Computing, 108, 2021, 107454.
[47] Wang, L., Yang, G., An interval uncertainty propagation method using polynomial chaos expansion and its application in complicated multibody dynamic systems, Nonlinear Dynamics, 105, 2021, 837-858.
[48] Wang, C.Y., Longest reach of a cantilever with a tip load, European Journal of Physics, 37, 2016, 012001.
[49] Plaut, R.H., Virgin, L.N., Furthest reach of a uniform cantilevered elastic, Mechanics Research Communications, 83, 2017, 18-21.
[50] Abdalla, H.M.A., Casagrande, D., On the longest reach problem in large deflection elastic rods, International Journal of Nonlinear Mechanics, 119, 2020, 103310.
[51] Le, M.Q., Tran, D.T., Bui, H.L., Optimal design of a torsional shaft system using Pontryagin's Maximum Principle, Meccanica, 47, 2012, 1197–1207.
[52] Atanackovic, T.M., Simic, S.S., On the optimal shape of a Pflüger column, European Journal of Mechanics A/Solids, 18(5), 1999, 903-913.
[53] Atanackovic, T.M., Novakovic, B.N., Optimal shape of an elastic column on elastic foundation, European Journal of Mechanics A/Solids, 25(1), 2006, 154-165.
[54] Janev, M., Vrcelj, Z., Atanackovic, T.M., Optimal shape of the rotating nano rod, International Journal of Non-linear Mechanics, 132, 2021, 103688.
[55] Abdalla, H.M.A., Casagrande, D., De Bona, F., A Dynamic Programming Setting for Functionally Graded Thick-Walled Cylinders, Materials, 13, 2021, 3988.
[56] Abdalla, H.M.A., Casagrande, D., An Intrinsic Material Tailoring Approach for Functionally Graded Axisymmetric Hollow Bodies Under Plane Elasticity, Journal of Elasticity, 144, 2021, 15-32.