Fluid-dynamic Simulations for Assessment of Dimensioning ‎Methodologies of Pelton Turbine Buckets Considering the Initial ‎Torque Overcoming

Document Type : Research Paper

Authors

1 Grupo de Investigación e Innovación en Energía, Facultad de Ingeniería, I.U. Pascual Bravo. Calle 73 # 73A – 226. 050034 Medellín, Colombia‎

2 Grupo de Investigación e Innovación Ambiental, Facultad de Ingeniería, I.U. Pascual Bravo, Calle 73 # 73A-226, 050034, Medellín, Colombia‎

Abstract

The growing demand for energy resources highlights the need to optimize traditional energy transformation systems. Pelton-type turbines, which are extensively used in micro-generation systems, can be designed using different methodologies, however, no consensus has been reached on which methodology guarantees greater efficiency. This work aims to compare the fluid-dynamic behavior at the first-time instants of Pelton turbines for micro-generation dimensioned by three different methodologies, namely, OLADE, Nechleba, and Thake, evaluating their capacity to overcome the initial torque. The results show that OLADE methodology leads to the best fluid-dynamic performance, whereas Nechleba fails to overcome the prescribed torque. In the Thake methodology, the impact of water on the back face of buckets and the formation of reverse pressure gradients can counter the turbine rotation.

Keywords

Main Subjects

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. 

[1] IEA, Key World Energy Statistics 2021 – Analysis, IEA, septiembre de 2021. https://www.iea.org/reports/key-world-energy-statistics-2021 (accedido 8 de octubre de 2022).
[2] UPME, Boletín estadístico de Minas y Energía, 2019. https://www1.upme.gov.co/Hemeroteca/Paginas/Boletin-estadistico-de-ME.aspx (accedido 8 de octubre de 2022).
[3] European Renewable Energy Council, Renewable Energy in Europe Markets, Trends and Technologies, 2015.
[4] Keck H., Sick M., Thirty years of numerical flow simulation in hydraulic turbomachines, Acta Mechanica, 201, 2008, 211-229.
[5] Židonis A., Aggidis G.A., State of the art in numerical modelling of Pelton turbines, Renewable and Sustainable Energy Reviews, ‎‎45, 2015, 135-144.
[6] Nechleba M., Hydraulic turbines: their design and equipment, 1957.
[7] Mosonyi E., Water Power Development, 2 High-head power plants A, 1991.
[8] Eisering M., Micro Pelton Turbines Harnessing Water Power on a Small Scale - Element 9, 1991, Accedido: 24 de septiembre de 2022.
[9] Thake J., Micro-hydro Pelton Turbine Manual, PRACTICAL ACTION PUBLISHING, 2000.
[10] Solemslie B.W., Dahlhaug O.G., A reference Pelton turbine design, IOP Conference Series: Earth and Environmental Science, 15(3), 2012, 032005.
[11] Židonis A., Aggidis G.A., Pelton turbine: Identifying the optimum number of buckets using CFD, Journal of Hydrodynamics, Ser. B, 28, 2016, 75-83.
[12] Židonis A., Panagiotopoulos A., Aggidis G.A., Anagnostopoulos J.S., Papantonis D.E., Parametric optimisation of two Pelton turbine runner designs using CFD, Journal of Hydrodynamics, Ser. B, 27, 2015, 403-412.
[13] Ceballos Zuluaga J.M., Isaza Merino C.A., Patiño Arcila I.D., Morales Rojas A.D., Análisis comparativo de las metodologías de dimensionamiento de cangilones para turbinas Pelton en sistemas de micro-generación, INGENIERÍA Y COMPETITIVIDAD, 25, 2023, doi: 10.25100/iyc.v25i1.11797.
[14] Avellan F., Dupont P., Kvicinsky S., Chapuis L., Parkinson E., Vullioud G., Flow Calculations in Pelton Turbines. Part 2: Free Surface Flows, Proceedings of the19th IAHR Symposium on Hydraulic machinery and cavitation, Singapore, Republic of Singapore, 1998.
[15] Zoppé B., Pellone C., Maitre T., Leroy P., Flow analysis inside a Pelton turbine bucket, Journal of Turbomachinery, 128, 2006, ‎‎500-511.
[16] Klemetsen L.E., An experimental and numerical study of the free surface Pelton bucket flow, Master Thesis, Norwegian University of Science and Technology, 2010.
[17] Perrig A., Avellan F., Kueny J.L., Farhat M., Parkinson E., Flow in a Pelton turbine bucket: Numerical and experimental investigations, Journal of Fluids Engineering, Transactions of the ASME, 128, 2006, 350-358.
[18] Xiao Y.X., Cui T., Wang Z.W., Yan Z.G., Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine, IOP Conference Series: Earth and Environmental Science, 15, 2012, 052033.
[19] Zeng C., et al., Hydraulic performance prediction of a prototype four-nozzle Pelton turbine by entire flow path simulation, Renewable Energy, 125, 2018, 270-282.
[20] Parkinson E., Vullioud G., Geppert L., Keck H., Analysis of Pelton turbine flow patterns for improved runner-component interaction, International Journal on Hydropower & Dams, 9, 2002, 100-103.
[21] Hana M., A Discussion on Numerical Simulation in Pelton Turbines, Proc. 19th IAHR Symp., Singapore: World Scientific, ‎‎1998.
[22] Kvicinsky S., Kueny J.L., Avellan F., Parkinson E., Experimental and Numerical Analysis of Free Surface Flows in a Rotating Bucket, Proc. XXIst IAHR Symp. Hydraul. Mach. Syst. Lausanne: Laboratory for Hydraulic Machines, 2002.
[23] Anagnostopoulos J.S., Papantonis D.E., A Fast Lagrangian Simulation Method for Flow Analysis and Runner Design in Pelton Turbines, Journal of Hydrodynamics, 24, 2012, 930-941.
[24] Vessaz C., Andolfatto L., Avellan F., Tournier C., Toward design optimization of a Pelton turbine runner, 2017.
[25] Coz F., et al., Manual de mini y microcentrales hidráulicas, Lima, 1995.
[26] Hernandez C., Indacochea E., Apuntes para un diseño, estandarizacion y fabricación de equipos para pequeñas centrales hidroelectricas, Volumen II, Turbinas Pelton, Lima, 1988.
[27] ANSYS INC, Lecture 7: Course of Introduction to ANSYS Meshing. In Course os Introduction to ANSYS Meshing, 2015.
[28] ANSYS INC, Appendix A: Mesh Quality. In Training Manual: ANSYS Meshing Application Introduction, 2009.
[29] Zeng Y., Wang J., Ding S., Zhou H., Zang Y., Li F., Simulation Study on Dynamics of Hydraulic Turbines Used in Drilling Engineering, Shock and Vibration, 2020, 2020, 1-14.
[30] Panthee A., Neopane H.P., Thapa B., CFD Analysis of Pelton Runner, International Journal of Scientific and Research Publications, 4, 2014, 50-55.
[31] Nigussie T., Engeda A., Dribssa E., Design, Modeling, and CFD Analysis of a Micro Hydro Pelton Turbine Runner: For the Case of Selected Site in Ethiopia, International Journal of Rotating Machinery, 2017, 2017, e3030217.