[1] Yáñez, C., DeMas-Giménez, G., Royo, S., Overview of Biofluids and Flow Sensing Techniques Applied in Clinical Practice, Sensors, 22, 2022, 6836.
[2] Liepsch, D., Biofluid mechanics, Biomed. Tech., 43, 4, 1998, 94–99.
[3] Chhabra, R. P., Non-Newtonian Fluids: An Introduction, SERC School-cum-Symposium on Rheology of complex fluids, 2010.
[4] Baieth, H. A. E., Physical parameters of blood as a non-Newtonian fluid, Int. J. Biomed. Sci., 4, 2008, 323–329.
[5] Windberger, U., Sparer, A., Elsayad, K., The role of plasma in the yield stress of blood, Clin. Hemorheol. Microcirc., 84, 2023, 369-383.
[6] Wajihah, S. A., Sankar, D. S., A review on non-Newtonian fluid models for multi-layered blood rheology in constricted arteries, Arch. Appl. Mech., 93, 2023, 1771–1796.
[7] Venkatesan, J., Sankar, D. S., Hemalatha, K., Yatim, Y., Mathematical analysis of Casson fluid model for blood rheology in stenosed narrow arteries, J. Appl. Math., 2013, 2013, 583809.
[8] Sochi, T., Non-Newtonian flow in porous media, Polymer, 51, 2010, 5007–5023.
[9] Misra, J. C., Adhikary, S. D., Shit, G. G., Mathematical analysis of blood flow through an arterial segment with time-dependent stenosis, Math. Model. Anal., 13, 2008, 401-412.
[10] Siddiqui, S. U., Verma, N. K., Mishra, S., Gupta, R. S., Mathematical modelling of pulsatile flow of Casson’s fluid in arterial stenosis, Appl. Math. Comput., 210, 2009, 1–10.
[11] Kauffman, R. B., Thermoregulatory Physiology, Doomsday Preppers and Surviving the Unexpected Emergency, 2015, 1-4.
[12] Zolfaghari, A., Maerefat, M., Bioheat Transfer, Developments in Heat Transfer, 2011, 153–170.
[13] Luchakov, Y. I., Nozdrachev, A. D., Mechanism of heat transfer in different regions of human body, Biol. Bull., 36, 2009, 53–57.
[14] Pop, I., Sheremet, M., Free convection in a square cavity filled with a Casson fluid under the effects of thermal radiation and viscous dissipation, Int. J. Numer. Methods Heat Fluid Flow, 27, 2017, 2318–2332.
[15] Aghighi, M. S., Metivier, C., Masoumi, H., Natural convection of Casson fluid in a square enclosure, Multidiscip. Model. Mater. Struct., 16, 2020, 1245–1259.
[16] Sheikholeslami, M., Ganji, D. D., Magnetohydrodynamic and ferrohydrodynamic, External Magnetic Field Effects on Hydrothermal Treatment of Nanofluid, William Andrew Publishing, Norwich, New York, USA, 2016.
[17] Scanlon V. C., Sanders, T., Essentials of Anatomy and Physiology, FA Davis, 2018.
[18] Abdalla, S., Al-ameer, S. S., Al-Magaishi, S. H., Electrical properties with relaxation through human blood, Biomicrofluidics, 4, 2010, 1–16.
[19] Uchikawa, Y., Kotani, M., Measurement of Magnetic Field Produced from the Human Body, IEEE Transl. J. Magn. Japan, 7, 1992, 600–607.
[20] Kivrak, E., Yurt, K., Kaplan, A., Alkan, I., Altun, G., Effects of electromagnetic fields exposure on the antioxidant defense system, J. Microsc. Ultrastruct., 5, 2017, 167.
[21] Keltner, J. R., Roos, M. S., Brakeman, P. R., Budinger, T. F., Magnetohydrodynamics of blood flow, Magn. Reson. Med., 16, 1990, 139–149.
[22] Rashidi, S., Esfahani, J. A., Maskaniyan, M., Applications of magnetohydrodynamics in biological systems-a review on the numerical studies, J. Magn. Magn. Mater., 439, 2017, 358–372.
[23] Ali, F., Imtiaz, A., Khan, I., Sheikh, N. A., Hemodynamic flow in a vertical cylinder with heat transfer: Two-phase caputo fabrizio fractional model, J. Magn., 23, 2018, 179–191.
[24] Ali, F., Imtiaz, A., Khan, I., Sheikh, N.A., Flow of magnetic particles in blood with isothermal heating: A fractional model for two-phase flow, J. Magn. Magn. Mater., 456, 2018, 413–422.
[25] Ali, F., Khan, N., Imtiaz, A., Khan, I., Sheikh, N. A., The impact of magnetohydrodynamics and heat transfer on the unsteady flow of Casson fluid in an oscillating cylinder via integral transform: A Caputo–Fabrizio fractional model, Pramana - J. Phys., 93, 2019, 1–12.
[26] Kumar, G., Rizvi, S. M., Casson fluid flow past on vertical cylinder in the presence of chemical reaction and magnetic field, Appl. Appl. Math. An Int. J., 16, 2021, 524–537.
[27] Mehmood, O. U., Mustapha, N., Shafie, S., Unsteady Two-Dimensional Blood Flow in Porous Artery with Multi-Irregular Stenoses, Transp. Porous Media, 92, 2012, 259–275.
[28] Khaled, A. R. A., Vafai, K., The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat Mass Transf., 46, 2003, 4989–5003.
[29] Omamoke, E., Amos, E., Jatari, E., Impact of Thermal Radiation and Heat Source on MHD Blood Flow with an Inclined Magnetic Field in Treating Tumor and Low Blood, Asian Res. J. Math., 2020, 77–87.
[30] Dash, R. K., Mehta, K. N., Jayaraman, G., Casson Fluid Flow in a Pipe Filled with a Homogeneous Porous Medium, Int. J. Engng Sci., 34, 1996, 1145–1156.
[31] Anurag, Singh, A. K., Role of heat source / sink in transient free convective flow through a vertical cylinder filled with a permeable medium: An analytical approach, Heat Transf., 50, 2021, 3154-3175.
[32] Anurag, Maurya, J. P., Singh, A. K., Significance of time-dependent magnetohydrodynamic transient free convective flow in vertical annuli: An analytical approach with the finite Hankel transform, Heat Transf., 50, 2021, 6719–6736.
[33] Raje, A., Koyani, F., Bhise, A. A., Ramesh, K., Heat transfer and entropy optimization for unsteady MHD Casson fluid flow through a porous cylinder: Applications in nuclear reactors, Int. J. Mod. Phys. B, 7, 2023, 2350293.
[34] Mahian, O., Kianifar, A., Kleinstreuer, C., Al-Nimr, M. A., Pop, I., Sahin, A. Z., Wongwises, S., A review of entropy generation in nanofluid flow, Int. J. Heat Mass Transf., 65, 2013, 514–532.
[35] Mahian, O., Kianifar, A., Kalogirou, S. A., Pop, I., Wongwises, S., A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transf., 57, 2013, 582–594.
[36] Buongiorno, J., et al., A benchmark study on the thermal conductivity of nanofluids, J. Appl. Phys., 106, 2009, 094312.
[37] Choi, S. U. S., Enhancing thermal conductivity of fluids with nanoparticles, Am. Soc. Mech. Eng. Fluids Eng. Div. FED, 231, 1995, 99–105.
[38] Sheikholeslami, M., Ganji, D. D., Nanofluid convective heat transfer using semi analytical and numerical approaches: A review, J. Taiwan Inst. Chem. Eng., 65, 2016, 43–77.
[39] Guo, Z., A review on heat transfer enhancement with nanofluids, J. Enhanc. Heat Transf., 27, 2020, 1–70.
[40] Mahian, O., Pop, I., Sahin, A. Z., Oztop, H. F., Wongwises, S., Irreversibility analysis of a vertical annulus using TiO2/water nanofluid with MHD flow effects, Int. J. Heat Mass Transf., 64, 2013, 671–679.
[41] Mabrouk, M., Das, D. B., Salem, Z. A., Beherei, H. H., Nanomaterials for biomedical applications: Production, characterisations, recent trends and difficulties, Molecules, 26, 2021, 1–27.
[42] Wong, K. V., De Leon, O., Applications of nanofluids: Current and future, Adv. Mech. Eng., 2010, 1–11.
[43] Malik, M. Y., Naseer, M., Nadeem, S., Rehman, A., The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder, Appl. Nanosci., 4, 2014, 869–873.
[44] Alebraheem, J., Ramzan, M., Flow of nanofluid with Cattaneo – Christov heat flux model, Appl. Nanosci., 10, 2020, 2989-99.
[45] Khan, A., Shah, Z., Alzahrani, E., Islam, S., Entropy generation and thermal analysis for rotary motion of hydromagnetic Casson nanofluid past a rotating cylinder with Joule heating effect, Int. Commun. Heat Mass Transf., 119, 2020, 104979.
[46] Walelign, T., Haile, E., Kebede, T., Walelgn, A., Analytical study of heat and mass transfer in MHD flow of chemically reactive and thermally radiative Casson nanofluid over an inclined stretching cylinder, J. Phys. Commun., 4, 2020, 1–20.
[47] Farooq, U., Waqas, H., E.Alhazmi, S., Alhushaybari, A., Imran, M., Sadat, R., Muhammad, T., Ali, M. R., Numerical treatment of Casson nanofluid Bioconvectional flow with heat transfer due to stretching cylinder/plate: Variable physical properties, Arab. J. Chem., 16, 2023, 1-15.
[48] Alharbi, K. A. M., Shahmir, N., Ramzan, M., Almusawa, M. Y., Kadry, S., Bioconvective radiative unsteady Casson nanofluid flow across two concentric stretching cylinders with variable viscosity and variable thermal conductivity, Numer. Heat Transf. Part A-Applications, 2023.
[49] Mahdi, R. A., Mohammed, H. A., Munisamy, K. M., Saeid, N. H., Review of convection heat transfer and fluid flow in porous media with nanofluid, Renew. Sustain. Energy Rev., 41, 2015, 715–734.
[50] Kasaeian, A., Daneshazarian, R., Mahian, O., Kolsi, L., Chamkha, A. J., Wongwises, S., Pop, I., Nanofluid flow and heat transfer in porous media: A review of the latest developments, Int. J. Heat Mass Transf., 107, 2017, 778–791.
[51] Ghadimi, A., Saidur, R., Metselaar, H. S. C., A review of nanofluid stability properties and characterization in stationary conditions, Int. J. Heat Mass Transf., 54, 2011, 4051–4068.
[52] Merkin, J. H., Pop, I., Lok, Y. Y., Grosan, T., Basic equations and mathematical methods, Similarity Solutions for the Boundary Layer Flow and Heat Transfer of Viscous Fluids, Nanofluids, Porous Media, and Micropolar Fluids, Academic Press, 2022.
[53] Yan, J. F., Liu, J., Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues, Nanomedicine Nanotechnology, Biol. Med., 4, 2008, 79–87.
[54] Yu, Z., Gao, L., Chen, K., Zhang, W., Zhang, Q., Li, Q., Hu, K., Nanoparticles: A New Approach to Upgrade Cancer Diagnosis and Treatment, Nanoscale Res. Lett., 16, 2021, 88.
[55] Hamad, E. M., Khaffaf, A., Yasin, O., El-Rub, Z. A., Al-Gharabli, S., Al-Kouz, W., Chamkha, A. J., Review of Nanofluids and Their Biomedical Applications, J. Nanofluids, 10, 2021, 463–477.
[56] Hou, Y., Z. Sun, W. Rao, and J. Liu, Nanoparticle-mediated cryosurgery for tumor therapy, Nanomedicine Nanotechnology, Biol. Med., 14, 2018, 493–506.
[57] Sheikhpour, M., Arabi, M., Kasaeian, A., Rabei, A. R., Taherian, Z., Role of nanofluids in drug delivery and biomedical technology: Methods and applications, Nanotechnol. Sci. Appl., 13, 2020, 47–59.
[58] Liu, J., Deng, Z. S., Nano-cryosurgery: Advances and challenges, J. Nanosci. Nanotechnol., 9, 2009, 4521–4542.
[59] Khan, U., Bilal, S., Zaib, A., Makinde,O. D., Wakif, A., Numerical simulation of a nonlinear coupled differential system describing a convective flow of Casson gold–blood nanofluid through a stretched rotating rigid disk in the presence of Lorentz forces and nonlinear thermal radiation, Numer. Methods Partial Differ. Equ., 38, 2022, 308–328.
[60] Khan, U., Zaib, A., Khan, I., Nisar, K. S., Insight into the dynamics of transient blood conveying gold nanoparticles when entropy generation and Lorentz force are significant, Int. Commun. Heat Mass Transf., 127, 2021, 105415.
[61] Hussain, M., Farooq, U., Sheremet, M., Nonsimilar convective thermal transport analysis of EMHD stagnation Casson nanofluid flow subjected to particle shape factor and thermal radiations, Int. Commun. Heat Mass Transf., 137, 2022, 106230.
[62] Hussain, F., Nazeer, M., Altanji, M., Saleem, A., Ghafar, M. M., Thermal analysis of Casson rheological fluid with gold nanoparticles under the impact of gravitational and magnetic forces, Case Stud. Therm. Eng., 28, 2021, 101433.
[63] Upreti, H., Bartwal, P., Pandey, A. K., Makinde, O. D., Heat transfer assessment for Au-blood nanofluid flow in Darcy-Forchheimer porous medium using induced magnetic field and Cattaneo-Christov model, Numer. Heat Transf. Part B-Fundamentals, 84, 2023, 415–431.
[64] Imtiaz, A., Foong, O. M., Aamina, A., Khan, N., Ali, F., Khan, I., Generalized model of blood flow in a vertical tube with suspension of gold nanomaterials: Applications in the cancer therapy, Comput. Mater. Contin., 65, 2020, 171–192.
[65] Wang, R., Chai, J., Luo, B., Liu, X., Zhang, J., Wu, M., Wei, M., Ma, Z., A review on slip boundary conditions at the nanoscale: recent development and applications, Beilstein J. Nanotechnol., 12, 2021, 1237–1251.
[66] Nubar, Y., Blood Flow, Slip, and Viscometry, Biophys. J., 11, 1971, 252–264.
[67] Khan, M., Hashim, Hafeez, A., A review on slip-flow and heat transfer performance of nanofluids from a permeable shrinking surface with thermal radiation: Dual solutions, Chem. Eng. Sci., 173, 2017, 1–11.
[68] Rao, I. J., Rajagopal, K. R., Effect of the slip boundary condition on the flow of fluids in a channel, Acta Mech., 135, 1999, 113–126.
[69] Afify, A. A., The Influence of Slip Boundary Condition on Casson Nanofluid Flow over a Stretching Sheet in the Presence of Viscous Dissipation and Chemical Reaction, Math. Probl. Eng., 2017, 1-12.
[70] Gbadeyan, J. A., Titiloye, E. O., Adeosun, A. T., Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip, Heliyon, 6, 2020, e03076.
[71] Noor, N. A. M., Shafie, S., Admon, M. A., Effects of viscous dissipation and chemical reaction on MHD squeezing flow of Casson nanofluid between parallel plates in a porous medium with slip boundary condition, Eur. Phys. J. Plus, 123, 2020, 855.
[72] Thirupathi, G., Govardhan, K., Narender, G., Radiative Magnetohydrodynamics Casson Nanofluid Flow and Heat and Mass Transfer past on Nonlinear Stretching Surface, J. Adv. Res. Numer. Heat Transf. J., 5, 2021, 1–21.
[73] Usman, M., Soomro, F. A., Ul Haq, R., Wang, W., Defterli, O., Thermal and velocity slip effects on Casson nanofluid flow over an inclined permeable stretching cylinder via collocation method, Int. J. Heat Mass Transf., 122, 2018, 1255–1263.
[74] Iqbal, W., Jalil, M., Khadimallah, M. A., Hussain, M., Naeem, M. N., Al Naim, A. F., Tounsi, A., Interaction of casson nanofluid with Brownian motion:Temperature profile with shooting method, Adv. Nano Res., 10, 2021, 349–357.
[75] Azmi, W. F. W., Mohamad, A. Q., Jiann, L. Y., Shafie, S., Unsteady natural convection flow of blood Casson nanofluid (Au) in a cylinder: nano ‑ cryosurgery applications, Sci. Rep., 13, 2023, 1–15.
[76] Rogers, K., Blood Vessel, Encyclopedia Britannica, 2023. Available at: https://www.britannica.com/science/blood-vessel.
[77] Body, V., Blood Vessels, Circulatory Anantomy, 2023. Available at: https://www.visiblebody.com/learn/circulatory/circulatory-blood.
[78] Tietjen, G. T., Saltzman, W. M., Nanomedicine gets personal, Sci. Transl. Med., 7, 2015, 1–4.
[79] Maiti, S., Shaw, S., Shit, G. C., Fractional order model for thermochemical flow of blood with Dufour and Soret effects under magnetic and vibration environment, Colloids Surfaces B Biointerfaces, 197, 2021, 111395.
[80] Raza, J., Thermal radiation and slip effects on magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a convective stretching sheet, Propuls. Power Res., 18, 2019, 138-146.
[81] Benhanifia, K., Redouane, F., Lakhdar, R., Brahim, M., Al‑Farhany, K., Jamshed, W., Eid, M. R., El Din, S. M., Raizah, Z., Investigation of mixing viscoplastic fluid with a modified anchor impeller inside a cylindrical stirred vessel using Casson–Papanastasiou model, Sci. Rep., 12, 2022, 1–19.
[82] Noranuar, W. N. N., Mohamad, A. Q., Shafie, S., Khan, I., Jiann, L. Y., Ilias, M. R., Non-coaxial rotation flow of MHD Casson nanofluid carbon nanotubes past a moving disk with porosity effect, Ain Shams Eng. J., 12, 2021, 4099-4110.
[83] Mackolil, J., Mahanthesh, B., Exact and statistical computations of radiated flow of nano and Casson fluids under heat and mass flux conditions, J. Comput. Des. Eng., 6, 2019, 593–605.
[84] Oztop, H. F., Abu-Nada, E., Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29, 2008, 1326–1336.
[85] Padma, R., Selvi, R. T., Ponalagusamy, R., Effects of slip and magnetic field on the pulsatile flow of a Jeffrey fluid with magnetic nanoparticles in a stenosed artery, Eur. Phys. J. Plus, 134, 2019, 1–15.
[86] Khan, I., Shah, N. A., Tassaddiq, A., Mustapha, N., Kechil, S. A., Natural convection heat transfer in an oscillating vertical cylinder, PLoS One, 13, 2018, e0188656.
[87] Mirza, I. A., Akram, M. S., Siddique, I., Flows of a generalized second grade fluid in a cylinder due to a velocity shock, Chinese J. Phys., 60, 2019, 720–730.
[88] Maiti, S., Shaw, S., Shit, G. C., Caputo–Fabrizio fractional order model on MHD blood flow with heat and mass transfer through a porous vessel in the presence of thermal radiation, Phys. A Stat. Mech. its Appl., 540, 2020, 123149.
[89] Esfe, M. H., Bahiraei, M., Torabi, A., Valadkhani, M., A critical review on pulsating flow in conventional fluids and nanofluids: Thermo-hydraulic characteristics, Int. Commun. Heat Mass Transf., 120, 2021, 104859.
[90] Tripathi, J., Vasu, B., Gorla, R. S. R., Chamkha, A. J., Murthy, P. V. S. N., Bég, O. A., Blood flow mediated hybrid nanoparticles in human arterial system: Recent research, development and applications, J. Nanofluids, 10, 2021, 1–30.
[91] Reyaz, R., Mohamad, A. Q., Lim, Y. J., Saqib, M., Shafie, S., Analytical Solution for Impact of Caputo-Fabrizio Fractional Derivative on MHD Casson Fluid with Thermal Radiation and Chemical Reaction Effects, Fractal Fract., 6, 2022, 38.
[92] Onyiriuka, E. J., Ighodaro, O. O., Adelaja, A. O., Ewim, D. R. E., Bhattacharyya, S., A numerical investigation of the heat transfer characteristics of water-based mango bark /nanofluid flowing in a double-pipe heat exchanger, Heliyon, 5, 2019, e02416.