A Scoping Review of the Thermoelectric Generator Systems Designs (Heat Exchangers and Coolers) with Locations of Application to Recover Energy from Internal Combustion Engines

Document Type : Review Paper

Authors

Department of Mechanical Engineering, University of Babylon‎, Babylon‎, 51002‎, Iraq

Abstract

Currently, a significant number of automobiles are equipped with internal combustion engines. In urban areas, a significant number of transportation methods have detrimental environmental effects through the release of pollutants resulting from the combustion of fossil fuels. In addition to the emission of toxic pollutants, internal combustion engines experience significant energy losses through exhaust emissions. Advanced technological applications have the potential to recover of a portion of the waste heat from exhaust ducts. Evaluations conducted by scholars across several disciplines highlight diverse perspectives on the recycling of thermal energy from exhaust gases as a means of mitigating pollution sources. However, this review focuses on the utilization of thermoelectric generators for harvesting a fraction of the aforementioned dissipated energy. The energy harvesting system is comprised of three components: the heat exchanger, which serves as the heat source; the cooler, which functions as the heat sink; and the thermoelectric generators, which act as the heat engine sandwiched between the heat exchanger and the cooler. This review examines the diverse exterior designs of heat exchangers and coolers and categorizes them accordingly. Additionally, it identifies the optimal installation locations for harvesting systems and explores the impact of design variations, choice of metals for manufacturing, and internal topography on the generation of electrical power. The primary findings of this review emphasize the significance of prioritizing the design of heat exchangers over coolers. This is because the uniformity of the temperature distribution within the heat exchanger plays a crucial role in governing the overall performance. Moreover, the installation of the system on petrol engines was seen as more cost-effective in comparison to its installation on diesel engines, primarily due to the higher magnitude of energy emitted from the exhaust gases of the former as opposed to the latter. To the best of the author's knowledge, this review classification has never been performed before. This can be considered a brief path map and a starting point for future work by researchers and investigators in designing heat exchangers and coolers and choosing the locations of TEG system installations. Then profitable investment from the data that has been prepared and summarized.

Keywords

Main Subjects

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References
[1] Dahham, R.Y., Wei, H., Pan, J., Improving thermal efficiency of internal combustion engines: recent progress and remaining challenges, Energies, 15(17), 2022, 1-60.‏
[2] Jabbar, M.Y., Ahmed, S.Y., Exploratory review of the heat exchanger and cooler geometrical effect on energy harvesting from automobile exhaust using thermoelectric generators, Journal of Thermal Analysis and Calorimetry, 148, 2023,‏ 6607-6644.
[3] Sivaprahasam, D., Harish, S., Gopalan, R., Sundararajan, G., Automotive waste heat recovery by thermoelectric generator technology, Bringing Thermoelectricity into Reality, 11, 2018, 163-182.‏
[4] Madaro, F., Mehdipour, I., Caricato, A., Guido, F., Rizzi, F., Carlucci, A.P., De Vittorio, M., Available energy in cars’ exhaust system for IoT remote exhaust gas sensor and piezoelectric harvesting, Energies, 13(16), 2020, 1-15.‏
[5] Ikoma, K., Munekiyo, M., Furuya, K., Kobayashi, M.A.K.M., Izumi, T.A.I.T., Shinohara, K.A.S.K., Thermoelectric module and generator for gasoline engine vehicles, In Seventeenth International Conference on Thermoelectrics, Proceedings ICT98 (Cat. No. 8TH8365) (pp. 464-467), IEEE, 1998.
[6] Haidar, J.G., Ghojel, J.I., Waste heat recovery from the exhaust of low-power diesel engine using thermoelectric generators, In Proceedings ICT2001, 20 International Conference on Thermoelectrics (Cat. No. 01TH8589) (pp. 413-418), IEEE, 2001.‏
[7] Hsiao, Y.Y., Chang, W.C., Chen, S.L., A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine, Energy, 35(3), 2010, 1447-1454.‏
[8] Love, N.D., Szybist, J.P., Sluder, C.S., Effect of heat exchanger material and fouling on thermoelectric exhaust heat recovery, Applied Energy, 89(1), 2012, 322-328.‏
[9] Su, C., Tong, N., Xu, Y., Chen, S., Liu, X., Effect of the sequence of the thermoelectric generator and the three-way catalytic converter on exhaust gas conversion efficiency, Journal of Electronic Materials, 42, 2013, 1877-1881.‏
[10] Liu, X., Deng, Y.D., Chen, S., Wang, W.S., Xu, Y., Su, C.Q., A case study on compatibility of automotive exhaust thermoelectric generation system, catalytic converter and muffler, Case Studies in Thermal Engineering, 2, 2014, 62-66.‏
[11] Su, C.Q., Wang, W.S., Liu, X., Deng, Y.D., Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators, Case Studies in Thermal Engineering, 4, 2014, 85-91.‏
[12] Niu, Z., Diao, H., Yu, S., Jiao, K., Du, Q., Shu, G., Investigation and design optimization of exhaust-based thermoelectric generator system for internal combustion engine, Energy Conversion and Management, 85, 2014, 85-101.‏
 [13] Liu, X., Deng, Y.D., Zhang, K., Xu, M., Xu, Y., Su, C.Q., Experiments and simulations on heat exchangers in thermoelectric generator for automotive application, Applied Thermal Engineering, 71(1), 2014, 364-370.‏
[14] Bai, S., Lu, H., Wu, T., Yin, X., Shi, X., & Chen, L., Numerical and experimental analysis for exhaust heat exchangers in automobile thermoelectric generators, Case Studies in Thermal Engineering, 4, 2014, 99-112.‏
[15] Wang, Y., Wu, C., Tang, Z., Yang, X., Deng, Y., Su, C., Optimization of fin distribution to improve the temperature uniformity of a heat exchanger in a thermoelectric generator, Journal of Electronic Materials, 44, 2015, 1724-1732.
[16] Liu, X., Deng, Y.D., Li, Z., Su, C.Q., Performance analysis of a waste heat recovery thermoelectric generation system for automotive application, Energy Conversion and Management, 90, 2015, 121-127.‏
[17] Du, Q., Diao, H., Niu, Z., Zhang, G., Shu, G., Jiao, K., Effect of cooling design on the characteristics and performance of thermoelectric generator used for internal combustion engine, Energy Conversion and Management, 101, 2015, 9-18.‏
[18] Wang, Y., Li, S., Yang, X., Deng, Y., Su, C., Numerical and experimental investigation for heat transfer enhancement by dimpled surface heat exchanger in thermoelectric generator, Journal of Electronic Materials, 45, 2016, 1792-1802.‏
[19] Su, C.Q., Huang, C., Deng, Y.D., Wang, Y.P., Chu, P.Q., Zheng, S.J., Simulation and optimization of the heat exchanger for automotive exhaust-based thermoelectric generators, Journal of Electronic Materials, 45, 2016, 1464-1472.‏
[20] Kim, T.Y., Negash, A.A., Cho, G., Waste heat recovery of a diesel engine using a thermoelectric generator equipped with customized thermoelectric modules, Energy Conversion and Management, 124, 2016, 280-286.‏
[21] Dai, H., Li, M., Design of Thermoelectric Power Generation Based on Engine Exhaust gas, 4th International Conference on Mechanical Materials and Manufacturing Engineering, (pp. 537-541), Atlantis Press, 2016.‏
[22] Kim, T.Y., Lee, S., Lee, J., Fabrication of thermoelectric modules and heat transfer analysis on internal plate fin structures of a thermoelectric generator, Energy Conversion and Management, 124, 2016, 470-479.‏
[23] Liu, C., Deng, Y.D., Wang, X.Y., Liu, X., Wang, Y.P., Su, C.Q., Multi-objective optimization of heat exchanger in an automotive exhaust thermoelectric generator, Applied Thermal Engineering, 108, 2016, 916-926.‏
[24] Ziolkowski, A., Automotive Thermoelectric Generator impact on the efficiency of a drive system with a combustion engine, In MATEC Web of Conferences, (Vol. 118, p. 00024), EDP Sciences, 2017.‏
[25] Wang, Y., Li, S., Zhang, Y., Yang, X., Deng, Y., Su, C., The influence of inner topology of exhaust heat exchanger and thermoelectric module distribution on the performance of automotive thermoelectric generator, Energy Conversion and Management, 126, 2016, 266-277.‏
[26] He, W., Wang, S., Yue, L., High net power output analysis with changes in exhaust temperature in a thermoelectric generator system, Applied Energy, 196, 2017, 259-267.‏
[27] Sempels, É.V., Lesage, F.J., Optimal thermal conditions for maximum power generation when operating thermoelectric liquid-to-liquid generators, IEEE Transactions on Components, Packaging and Manufacturing Technology, 7(6), 2017, 872-881.
[28] Lu, X., Yu, X., Qu, Z., Wang, Q., Ma, T., Experimental investigation on thermoelectric generator with non-uniform hot-side heat exchanger for waste heat recovery, Energy Conversion and Management, 150, 2017, 403-414.‏
[29] Chinguwa, S., Musora, C., Mushiri, T., The design of portable automobile refrigerator powered by exhaust heat using thermoelectric, Procedia Manufacturing, 21, 2018, 741-748.‏
[30] Quan, R., Liu, G., Wang, C., Zhou, W., Huang, L., Deng, Y., Performance investigation of an exhaust thermoelectric generator for military SUV application, Coatings, 8(1), 2018, 45.‏
[31] Wang, Y., Li, S., Xie, X., Deng, Y., Liu, X., Su, C., Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger, Applied Energy, 218, 2018, 391-401.‏
[32] Fernández-Yañez, P., Armas, O., Capetillo, A., Martínez-Martínez, S., Thermal analysis of a thermoelectric generator for light-duty diesel engines, Applied Energy, 226, 2018, 690-702.‏
[33] Eddine, A.N., Chalet, D., Faure, X., Aixala, L., Chessé, P., Effect of engine exhaust gas pulsations on the performance of a thermoelectric generator for wasted heat recovery: An experimental and analytical investigation, Energy, 162, 2018, 715-727.
[34] Yang, Y., Wang, S., He, W., Simulation study on regenerative thermoelectric generators for dynamic waste heat recovery, Energy Procedia, 158, 2019, 571-576.‏
[35] Luo, D., Wang, R., Yu, W., Sun, Z., Meng, X., Theoretical analysis of energy recovery potential for different types of conventional vehicles with a thermoelectric generator, Energy Procedia, 158, 2019, 142-147.‏
[36] Wang, J., Song, X., Li, Y., Zhang, C., Zhao, C., Zhu, L., Modeling and analysis of thermoelectric generators for diesel engine exhaust heat recovery system, Journal of Energy Engineering, 146(2), 2020, 04020002.
[37] Singh, B.S.B., Noh, N.A.S.M., Remeli, M.F., Oberoi, A., Experimental Study on Waste Heat Recovery from an Internal Combustion Engine Using Thermoelectric Generator, Journal of Advanced Research in Applied Mechanics, 72(1), 2020, 25-36.
[38] Sheikh, R., Gholampour, S., Fallahsohi, H., Goodarzi, M., Mohammad Taheri, M., Bagheri, M., Improving the efficiency of an exhaust thermoelectric generator based on changes in the baffle distribution of the heat exchanger, Journal of Thermal Analysis and Calorimetry, 143, 2021, 523-533.‏
[39] Garud, K.S., Seo, J.H., Patil, M.S., Bang, Y.M., Pyo, Y.D., Cho, C.P., Lee, M.Y., Thermal–electrical–structural performances of hot heat exchanger with different internal fins of thermoelectric generator for low power generation application, Journal of Thermal Analysis and Calorimetry, 143, 2021, 387-419.
[40] Luo, D., Wang, R., Yu, W., Zhou, W., Performance optimization of a converging thermoelectric generator system via multiphysics simulations, Energy, 204, 2020, 117974.‏
[41] Salek, F., Zamen, M., Hosseini, S.V., Babaie, M., Novel hybrid system of pulsed HHO generator/TEG waste heat recovery for CO reduction of a gasoline engine, International Journal of Hydrogen Energy, 45(43), 2020, 23576-23586.‏
[42] Ramírez, R., Gutiérrez, A.S., Eras, J.J.C., Valencia, K., Hernández, B., Forero, J.D., Evaluation of the energy recovery potential of thermoelectric generators in diesel engines, Journal of Cleaner Production, 241, 2019, 118412.‏
[43] Kumar, T.K., Kumar, S.A., Ram, K.K., Goli, K.R., Prasad, V.S., Analysis of thermo electric generators in automobile applications, Materials Today: Proceedings, 45, 2021, 5835-5839.
[44] Karana, D.R., Sahoo, R.R., Performance assessment of the automotive heat exchanger with twisted tape for thermoelectric based waste heat recovery, Journal of Cleaner Production, 283, 2021, 124631.
[45] Seo, J.H., Garud, K.S., Lee, M.Y., Grey relational based Taguchi analysis on thermal and electrical performances of thermoelectric generator system with inclined fins hot heat exchanger, Applied Thermal Engineering, 184, 2021, 116279.‏
[46] Yin, T., Li, Z.M., Peng, P., Liu, W., Shao, Y.Y., He, Z.Z., Performance analysis of a novel Two-stage automobile thermoelectric generator with the Temperature-dependent materials, Applied Thermal Engineering, 195, 2021, 117249.‏
[47] Chen, W.H., Chiou, Y.B., Chein, R.Y., Uan, J.Y., Wang, X.D., Power generation of thermoelectric generator with plate fins for recovering low-temperature waste heat, Applied Energy, 306, 2022, 118012.‏
[48] Chen, J., Wang, R., Luo, D., Zhou, W., Performance optimization of a segmented converging thermoelectric generator for waste heat recovery, Applied Thermal Engineering, 202, 2022, 117843.‏
[49] Luo, D., Sun, Z., Wang, R., Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery, Energy, 238, 2022, 121816.‏
[50] Lan, S., Stobart, R., Chen, R., Performance comparison of a thermoelectric generator applied in conventional vehicles and extended-range electric vehicles, Energy Conversion and Management, 266, 2022, 115791.‏
[51] Ge, M., Li, Z., Zhao, Y., Xuan, Z., Li, Y., Zhao, Y., Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery, Applied Energy, 322, 2022, 119523.‏
[52] Fini, A.T., Hashemi, S.A., Fattahi, A., On the efficient topology of the exhaust heat exchangers equipped with thermoelectric generators for an internal combustion engine, Energy Conversion and Management, 268, 2022, 115966.
[53] Quan, R., Liang, W., Quan, S., Huang, Z., Liu, Z., Chang, Y., Tan, B., Performance interaction assessment of automobile exhaust thermoelectric generator and engine under different operating conditions, Applied Thermal Engineering, 216, 2022, 119055.‏
[54] Gürbüz, H., Akçay, H., & Topalcı, Ü., Experimental investigation of a novel thermoelectric generator design for exhaust waste heat recovery in a gas-fueled SI engine, Applied Thermal Engineering, 216, 2022, 119122.‏
[55] Cuyubamba, P., Asto-Evangelista, J., Almerco-Ataucusi, J.R., Valenzuela-Lino, Y.S., Huamanchahua, D., Moggiano, N., Design and Performance Study of the Heat Exchanger of a Fin-Based Thermoelectric Generator via Numerical Simulations, 11th International Conference on Power Science and Engineering (ICPSE) (pp. 34-39), IEEE, 2022.‏
[56] Luo, D., Yan, Y., Li, Y., Wang, R., Cheng, S., Yang, X., Ji, D., A hybrid transient CFD-thermoelectric numerical model for automobile thermoelectric generator system, Applied Energy, 332, 2023, 120502.‏
[57] Luo, D., Wu, Z., Yan, Y., Ji, D., Cheng, Z., Wang, R., Yang, X., Optimal design of a heat exchanger for automotive thermoelectric generator systems applied to a passenger car, Applied Thermal Engineering, 227, 2023, 120360.‏
[58] Luo, D., Yan, Y., Chen, W.H., Yang, X., Chen, H., Cao, B., Zhao, Y., A comprehensive hybrid transient CFD-thermal resistance model for automobile thermoelectric generators, International Journal of Heat and Mass Transfer, 211, 2023, 124203.‏
[59] Ni, P., Hua, R., Lv, Z., Wang, X., Zhang, X., Li, X., Performance analysis of compact thermoelectric generation device for harvesting waste heat, Energy Conversion and Management, 291, 2023, 117333.‏
[60] Luo, D., Yan, Y., Li, Y., Chen, W.H., Yang, X., Wang, X., Cao, B., Dynamic behavior of automobile thermoelectric waste heat recovery under different driving cycles, Applied Thermal Engineering, 232, 2023, 121039.‏
[61] Luo, D., Yan, Y., Li, Y., Yang, X., Chen, H., Exhaust channel optimization of the automobile thermoelectric generator to produce the highest net power, Energy, 281, 2023, 128319.‏
[62] Abdelghany, E.S., Mohamed, E.S., Sarhan, H.H., Exhaust heat recovery performance analysis of a Bi-fuel engine utilizing a thermoelectric generation kit and fuel economy evaluation, Case Studies in Thermal Engineering, 49, 2023, 103288.
[63] Hong, T.D., Pham, M.Q., Nghiem, Q.T.P., Thermal uniformity enhancement of the motorcycle exhaust thermoelectric generator-Theory model for predicting heat exchanger fin profile, Results in Engineering, 19, 2023, 101324.
[64] Hong, T.D., Pham, M.Q., Huynh, K.Q., Tran, K.Q., Performance enhancement of the motorcycle exhaust thermoelectric generator-Optimization of the hot-side heat exchanger configuration, Case Studies in Thermal Engineering, 51, 2023, 103616.‏
[65] Oh, S., Ko, K.H., Kim, J., Development of thermoelectric exhaust energy recovery system of a hydrogen internal combustion engine in a city bus using a Three-Dimensional multiphysics model, Energy Conversion and Management, 300, 2024, 118006.
[66] Khripach, N.A., Papkin, B.A., Korotkov, V.S., Zaletov, D.V., Study of the influence of heat exchanger body design parameters on the performance of a thermoelectric generator for automotive internal combustion engine, Biosciences Biotechnology Research Asia, 12(S2), 2015, 677-689.‏
[67] Meng, J.H., Wang, X.D., Chen, W.H., Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery, Energy Conversion and Management, 120, 2016, 71-80.‏
[68] Kim, T.Y., Negash, A., Cho, G., Direct contact thermoelectric generator (DCTEG): A concept for removing the contact resistance between thermoelectric modules and heat source, Energy Conversion and Management, 142, 2017, 20-27.‏
[69] Luo, D., Wang, R., Yan, Y., Yu, W., Zhou, W., Transient numerical modeling of a thermoelectric generator system used for automotive exhaust waste heat recovery, Applied Energy, 297, 2021, 117151.‏
[70] Wang, Y.P., Chen, W., Huang, Y.Y., Liu, X., Su, C.Q., Performance study on a thermoelectric generator with exhaust-module-coolant direct contact, Energy Reports, 8, 2022, 729-738.‏
[71] Weng, C.C., Huang, M.J., A simulation study of automotive waste heat recovery using a thermoelectric power generator, International Journal of Thermal Sciences, 71, 2013, 302-309.‏
[72] Deng, Y.D., Chen, Y.L., Chen, S., Xianyu, W.D., Su, C.Q., Research on integration of an automotive exhaust-based thermoelectric generator and a three-way catalytic converter, Journal of Electronic Materials, 44, 2015, 1524-1530.‏
[73] Anand, P.N., Anshad, A., Joseph, A., James, G.E., Thomas, T., Development of Thermoelectric Generator, International Journal for Innovative Research in Science & Technology, 2(11), 2016, 2349-6010.
[74] Borcuch, M., Musiał, M., Gumuła, S., Sztekler, K., Wojciechowski, K., Analysis of the fins geometry of a hot-side heat exchanger on the performance parameters of a thermoelectric generation system, Applied Thermal Engineering, 127, 2017, 1355-1363.‏
[75] Gaurav, K., Sisodia, S., Pandey, S.K., Calculation of efficiency and power output by considering different realistic prospects for recovering heat from automobile using thermoelectric generator, Journal of Renewable and Sustainable Energy, 9(6), 2017, 064703.‏
[76] Shu, G., Ma, X., Tian, H., Yang, H., Chen, T., Li, X., Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery, Energy, 160, 2018, 612-624.‏
[77] Shishov, K.A., Selection of the design of a hot heat exchanger of an automotive thermoelectric generator for an urban driving cycle, Journal of Physics: Conference Series, 1410, 2019, 012240.‏
[78] Quan, R., Li, T., Yue, Y., Chang, Y., Tan, B., Experimental study on a thermoelectric generator for industrial waste heat recovery based on a hexagonal heat exchanger, Energies, 13(12), 2020, 3137.‏
[79] ERDOGAN, B., DURAN, K., ZENGİN, İ., Experimental and Numerical Analysis of Using Thermoelectric Generator Modules on Hexagonal Exhaust Heat Exchanger, Karaelmas Fen ve Mühendislik Dergisi, 11(1), 2021, 54-60.‏
[80] Marana, A.L.O., Martin, C.A.G., Montes-Páez, E., Junior, O.H.A., Modeling and simulation of a thermoelectric waste heat recovery system–TWRHS, Dyna, 88(217), 2021, 265-272.‏
[81] Quan, R., Wang, J., Li, T., Compatibility optimization of a polyhedral-shape thermoelectric generator for automobile exhaust recovery considering backpressure effects, Heliyon, 8(12), 2022, e12348.‏
[82] Wojciechowski, K.T., Borcuch, M., Musial, M., Wyzga, P., A tested for performance studies of gas-liquid thermoelectric generators for waste heat harvesting, Measurement, 203, 2022, 111933.‏
[83] Zhao, X., Jiang, J., Zuo, H., Mao, Z., Performance analysis of diesel particulate filter thermoelectric conversion mobile energy storage system under engine conditions of low-speed and light-load, Energy, 282, 2023, 128411.‏
[84] Zhao, X., Jiang, J., Zuo, H., Mao, Z., Performance analysis of diesel particulate filter thermoelectric conversion mobile energy storage system under engine conditions of low-speed and light-load, Energy, 282, 2023, 128411.‏
[85] Lu, C., Wang, S., Chen, C., Li, Y., Effects of heat enhancement for exhaust heat exchanger on the performance of thermoelectric generator, Applied Thermal Engineering, 89, 2015, 270-279.‏
[86] Li, Y., Wang, S., Zhao, Y., Experimental study on the influence of the core flow heat transfer enhancement on the performance of thermoelectric generator, Energy Procedia, 105, 2017, 901-907.‏
[87] Nithyanandam, K., Mahajan, R.L., Evaluation of metal foam based thermoelectric generators for automobile waste heat recovery, International Journal of Heat and Mass Transfer, 122, 2018, 877-883.‏
[88] Li, Y., Wang, S., Zhao, Y., Yue, L., Effect of thermoelectric modules with different characteristics on the performance of thermoelectric generators inserted in the central flow region with porous foam copper, Applied Energy, 327, 2022, 120041.‏
[89] Buonomo, B., Cascetta, F., di Pasqua, A., Manca, O., Performance parameters enhancement of a thermoelectric generator by metal foam in exhaust automotive lines, Thermal Science and Engineering Progress, 38, 2023, 101684.‏
[90] Eldin, S.M., Alanazi, M., Alanazi, A., Alqahtani, S., Alshehery, S., Anqi, A.E., Economic and thermal analysis of a tubular thermoelectric power generator equipped with a novel fin-pin-porous based heat exchanger; comparative case study with conventional smooth channel, Case Studies in Thermal Engineering, 48, 2023, 103166.‏
[91] Orr, B., Akbarzadeh, A., Lappas, P., An exhaust heat recovery system utilizing thermoelectric generators and heat pipes, Applied Thermal Engineering, 126, 2017, 1185-1190.‏
[92] Li, B., Huang, K., Yan, Y., Li, Y., Twaha, S., Zhu, J., Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles, Applied Energy, 205, 2017, 868-879.‏
[93] Cao, Q., Luan, W., Wang, T., Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery, Applied Thermal Engineering, 130, 2018, 1472-1479.
[94] Pacheco, N., Brito, F.P., Vieira, R., Martins, J., Barbosa, H., Goncalves, L.M., Compact automotive thermoelectric generator with embedded heat pipes for thermal control, Energy, 197, 2020, 117154.‏
[95] Högblom, O., Andersson, R., Multiphysics CFD simulation for design and analysis of thermoelectric power generation, Energies, 13(17), 2020, 4344.
[96] Carvalho, R., Martins, J., Pacheco, N., Puga, H., Costa, J., Vieira, R., Brito, F.P., Experimental validation and numerical assessment of a temperature-controlled thermoelectric generator concept aimed at maximizing performance under highly variable thermal load driving cycles, Energy, 280, 2023, 127979.‏
[97] Shen, Z.G., Huang, B., Liu, X., Effect of structure parameters on the performance of an annular thermoelectric generator for automobile exhaust heat recovery, Energy Conversion and Management, 256, 2022, 115381.
[98] Yang, W., Zhu, W., Yang, Y., Huang, L., Shi, Y., Xie, C., Thermoelectric performance evaluation and optimization in a concentric annular thermoelectric generator under different cooling methods, Energies, 15(6), 2022, 2231.‏
[99] Zhu, W., Yang, W., Yang, Y., Li, Y., Li, H., Shi, Y., Xie, C., Economic configuration optimization of onboard annual thermoelectric generators under multiple operating conditions, Renewable Energy, 197, 2022, 486-499.
[100] Yang, W., Zhu, W., Du, B., Wang, H., Xu, L., Xie, C., Shi, Y., Power generation of annular thermoelectric generator with silicone polymer thermal conductive oil applied in automotive waste heat recovery, Energy, 282, 2023, 128400.‏
[101] Yang, W., Jin, C., Zhu, W., Li, Y., Zhang, R., Huang, L., Shi, Y., Taguchi optimization and thermoelectrical analysis of a pin fin annular thermoelectric generator for automotive waste heat recovery, Renewable Energy, 220, 2024, 119628.‏
[102] Yang, W., Xu, A., Zhu, W., Li, Y., Shi, Y., Huang, L., Xie, C., Performance improvement and thermomechanical analysis of a novel asymmetrical annular thermoelectric generator, Applied Thermal Engineering, 237, 2024, 121804.‏
[103] Singh, B.S.B., Noh, N.A.S.M., Remeli, M.F., Oberoi, A., Experimental Study on Waste Heat Recovery from an Internal Combustion Engine Using Thermoelectric Generator, Journal of Advanced Research in Applied Mechanics, 72(1), 2020, 25-36.‏
[104] Deng, Y.D., Liu, X., Chen, S., Tong, N.Q., Thermal optimization of the heat exchanger in an automotive exhaust-based thermoelectric generator, Journal of Electronic Materials, 42, 2013, 1634-1640.‏
[105] Sukprapaporn, B., Maneechot, P., Ketjoy, N., Vaivudh, S., A suitable heat duct shape for a thermoelectric generator cooling system, Journal of Renewable Energy and Smart Grid Technology, 9(1), 2014, 19-30.‏
[105] Yuan, X., Bai, W., Deng, Y., Su, C., Liu, X., Liu, C., Wang, Y., Numerical investigation on the performance of an automotive thermoelectric generator integrated with a three-way catalytic converter, Journal of Renewable and Sustainable Energy, 8(4), 2016, 044704.‏
[107] Yan, S.R., Moria, H., Asaadi, S., Dizaji, H.S., Khalilarya, S., Jermsittiparsert, K., Performance and profit analysis of thermoelectric power generators mounted on channels with different cross-sectional shapes, Applied Thermal Engineering, 176, 2020, 115455.
[108] Zhang, M., Wang, J., Tian, Y., Zhou, Y., Zhang, J., Xie, H., Wang, Y., Performance comparison of annular and flat-plate thermoelectric generators for cylindrical hot source, Energy Reports, 7, 2021, 413-420.‏
[109] Huang, B., Shen, Z.G., Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery, Energy, 246, 2022, 123375.‏
[110] Asaduzzaman, M., Ali, M.H., Pratik, N.A., Lubaba, N., Exhaust Heat Harvesting of Automotive Engine Using Thermoelectric Generation Technology, Energy Conversion and Management: X, 19, 2023, 100398.‏
[111] Shu, G., Zhao, J., Tian, H., Liang, X., Wei, H., Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123, Energy, 45(1), 2012, 806-816.‏
[112] Phillip, N., Maganga, O., Burnham, K.J., Dunn, J., Rouaud, C., Ellis, M.A., Robinson, S., Modelling and simulation of a thermoelectric generator for waste heat energy recovery in low carbon vehicles, 2nd International Symposium on Environment Friendly Energies And Applications, (pp. 94-99), IEEE, 2012.‏
[113] Wang, Y., Dai, C., Wang, S., Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source, Applied Energy, 112, 2013, 1171-1180.‏
[114] Zhang, Y., Cleary, M., Wang, X., Kempf, N., Schoensee, L., Yang, J., Meda, L., High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery, Energy Conversion and Management, 105, 2015, 946-950.‏
[115] Bhati, D.S., Baghel, A., Heat Harvester, Journal of Electrical and Electronics Engineering, 11(6), 2016, 120-125.
[116] Risseh, A.E., Nee, H.P., Goupil, C., Electrical power conditioning system for thermoelectric waste heat recovery in commercial vehicles, IEEE Transactions on Transportation Electrification, 4(2), 2018, 548-562.‏
[117] Zhao, Y., Wang, S., Ge, M., Liang, Z., Liang, Y., Li, Y., Performance investigation of an intermediate fluid thermoelectric generator for automobile exhaust waste heat recovery, Applied Energy, 239, 2019, 425-433.‏
[118] Hewawasam, L.S., Jayasena, A.S., Afnan, M.M.M., Ranasinghe, R.A.C.P., Wijewardane, M.A., Waste heat recovery from thermo-electric generators (TEGs), Energy Reports, 6, 2020, 474-479.‏
[119] Hassan, D.M., Mussa, M.A., Thermal Performance Analysis of Compact Heat Exchangers for Thermoelectric Generators, Journal of Engineering, 26(3), 2020, 33-45.‏
[120] Aljaghtham, M., Celik, E., Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines, Energy, 200, 2020, 117547.‏
[121] Karana, D.R., Sahoo, R.R., Thermal, environmental and economic analysis of a new thermoelectric cogeneration system coupled with a diesel electricity generator, Sustainable Energy Technologies and Assessments, 40, 2020, 100742.
[122] Zhao, Y., Fan, Y., Ge, M., Xie, L., Li, Z., Yan, X., Wang, S., Thermoelectric performance of an exhaust waste heat recovery system based on intermediate fluid under different cooling methods, Case Studies in Thermal Engineering, 23, 2021, 100811.‏
[123] Zhao, Y., Lu, M., Li, Y., Ge, M., Xie, L., Liu, L., Characteristics analysis of an exhaust thermoelectric generator system with heat transfer fluid circulation, Applied Energy, 304, 2021, 117896.‏
[124] Fernández-Yáñez, P., Fernández-López, A.J., Soriano, J.A., Armas, O., A computational method to study heat transfer in a helicopter turboshaft engine compartment for waste energy recovery purposes, Applied Thermal Engineering, 242, 2024, 122529.‏
[125] Yue, S., Shao, S., He, W., Li, Y., Liu, W., Liu, P., Ao, W., Pioneer exploration on the energy recovery technology for waste heat in solid rocket motors by utilizing thermoelectric materials, Energy Conversion and Management, 302, 2024, 118151.‏
[126] Demir, M. E., Dincer, I., Performance assessment of a thermoelectric generator applied to exhaust waste heat recovery, Applied Thermal Engineering, 120, 2017, 694-707.‏
[127] Arumugam, S., Ramakrishna, P., Sangavi, S., Sriram, G., Thermoelectric Analysis of Automobiles Exhaust Waste Heat Recovery Material–A Simulation Study, Materials Today: Proceedings, 16, 2019, 516-523.‏
[128] Asaadi, S., Khalilarya, S., Jafarmadar, S., A thermodynamic and exergoeconomic numerical study of two-stage annular thermoelectric generator, Applied Thermal Engineering, 156, 2019, 371-381.‏
[129] Tian, M.W., Mihardjo, L.W., Moria, H., Asaadi, S., Pourhedayat, S., Dizaji, H.S., Wae-hayee, M., Economy, energy, exergy and mechanical study of co-axial ring shape configuration of legs as a novel structure for cylindrical thermoelectric generator, Applied Thermal Engineering, 184, 2021, 116274.
[130] Yang, W., Zhu, W., Li, Y., Zhang, L., Zhao, B., Xie, C., Huang, L., Annular thermoelectric generator performance optimization analysis based on concentric annular heat exchanger, Energy, 239, 2022, 122127.‏
[131] Xu, Y., Xue, Y., Cai, W., Qi, H., Li, Q., Experimental study on performances of flat-plate pulsating heat pipes without and with thermoelectric generators for low-grade waste heat recovery, Applied Thermal Engineering, 225, 2023, 120156.‏
 [132] Kim, D.H., Seo, S., Kim, S., Shin, S., Son, K., Jeon, S.J., Design and performance analyses of thermoelectric coolers and power generators for automobiles, Sustainable Energy Technologies and Assessments, 51, 2022, 101955.
[133] Kim, S., Park, S., Kim, S., Rhi, S.H., A thermoelectric generator using engine coolant for light-duty internal combustion engine-powered vehicles, Journal of Electronic Materials, 40, 2011, 812-816.
[134] Khripach, N.A., Korotkov, V.S., Papkin, I.A., Thermoelectric cooling system for internal combustion engine. Part 1: development of the technical aspects, International Journal of Applied Engineering Research, 11(15), 2016, 8547-8552.‏
[135] Baek, D., Ding, C., Lin, S., Shin, D., Kim, J., Lin, X., Chang, N., Reconfigurable thermoelectric generators for vehicle radiators energy harvesting, IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), (pp. 1-6), IEEE, 2017.‏
[136] Khripach, N.A., Korotkov, V.S., Papkin, I.A., Thermoelectric cooling radiator for internal combustion engine, International Journal of Mechanical Engineering and Technology, 8(11), 2017, 668-675.‏
[137] Kim, J., Baek, D., Ding, C., Lin, S., Shin, D., Lin, X., ..., Chang, N., Dynamic reconfiguration of thermoelectric generators for vehicle radiators energy harvesting under location-dependent temperature variations, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26(7), 2018, 1241-1253.‏
[138] Awria, A., Albana, M.H., Hakim, R., Experimental study: design of Thermoelectric Generator (TEG) fixture for harvesting an automobile electricity, International Conference on Applied Engineering (ICAE), (pp. 1-5), IEEE, 2018.‏
[139] Abderezzak, B., Randi, S., Experimental investigation of waste heat recovery potential from car radiator with thermoelectric generator, Thermal Science and Engineering Progress, 20, 2020, 100686.‏
[140] Ivanov, K., Aleksandrov, A., Design and Study of an Automotive Thermoelectric Generator, 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), (pp. 1-4). IEEE, 2020.‏
[141] Yu, J., Zhao, H., A numerical model for thermoelectric generator with the parallel-plate heat exchanger, Journal of Power Sources, 172(1), 2007, 428-434.‏
[142] Rezania, A., Rosendahl, L.A., Andreasen, S.J., Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink, International Communications in Heat and Mass Transfer, 39(8), 2012, 1054-1058.‏
[143] Deng, Y.D., Liu, X., Chen, S., Xing, H.B., Su, C.Q., Research on the compatibility of the cooling unit in an automotive exhaust-based thermoelectric generator and engine cooling system, Journal of Electronic Materials, 43, 2014, 1815-1823.
[144] Su, C.Q., Xu, M., Wang, W.S., Deng, Y.D., Liu, X., Tang, Z.B., Optimization of cooling unit design for automotive exhaust-based thermoelectric generators, Journal of Electronic Materials, 44, 2015, 1876-1883.‏
[145] He, W., Wang, S., Lu, C., Zhang, X., Li, Y., Influence of different cooling methods on thermoelectric performance of an engine exhaust gas waste heat recovery system, Applied Energy, 162, 2016, 1251-1258.‏
[146] Aranguren, P., Astrain, D., Rodríguez, A., Martínez, A., Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber, Applied Energy, 152, 2015, 121-130.‏
[147] He, W., Wang, S., Zhang, X., Li, Y., Lu, C., Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat, Energy, 91, 2015, 1-9.‏
[148] Qiang, J.W., Yu, C.G., Deng, Y.D., Su, C.Q., Wang, Y.P., Yuan, X.H., Multi-objective optimization design for cooling unit of automotive exhaust-based thermoelectric generators, Journal of Electronic Materials, 45, 2016, 1679-1688.
[149] Wang, L., Romagnoli, A., Cooling system investigation of thermoelectric generator used for marine waste heat recovery, IEEE 2nd Annual Southern Power Electronics Conference (SPEC), (pp. 1-6), IEEE, 2016.
[150] Su, C.Q., Zhu, D.C., Deng, Y.D., Wang, Y.P., Liu, X., Effect of cooling units on the performance of an automotive exhaust-based thermoelectric generator, Journal of Electronic Materials, 46, 2017 2822-2831.‏
[151] Deasy, M.J., Baudin, N., O'Shaughnessy, S.M., Robinson, A.J., Simulation-driven design of a passive liquid cooling system for a thermoelectric generator, Applied Energy, 205, 2017, 499-510.‏
[152] Kunt, M.A., Gunes, H., Experimental Investigation of the Performance of Different Heat Exchanger Profiles in the Waste Heat Recovery System with Thermoelectric Generator for Automobile Exhaust Systems, SSRG Journal, 4(8), 2017, 1-5.‏
 [153] Lei, X., Wang, Y., Deng, Y., Su, C., Liu, X., Chen, G., Combined numerical and experimental investigation on the optimum coolant flow rate for automotive thermoelectric generators, Journal of Electronic Materials, 48, 2019, 1981-1990.‏
[154] He, W., Guo, R., Takasu, H., Kato, Y., Wang, S., Performance optimization of common plate-type thermoelectric generator in vehicle exhaust power generation systems, Energy, 175, 2019, 1153-1163.‏
[155] Hilmin, M.N.H.M., Remeli, M.F., Singh, B., Affandi, N.D.N., Thermoelectric power generations from vehicle exhaust gas with TiO2 nanofluid cooling, Thermal Science and Engineering Progress, 18, 2020, 100558.‏
[156] Poornima, D., Vivekanandan, C., Performance of Water Cooled Thermoelectric Generator System for Petrol Engines Using Cuk Converter, 5th International Conference on Computing Methodologies and Communication (ICCMC), (pp. 653-659), IEEE, 2021.‏
[157] Nazarieh, M., Kariman, H., Hoseinzadeh, S., Numerical simulation of fluid dynamic performance of turbulent flow over Hunter turbine with variable angle of blades, International Journal of Numerical Methods for Heat & Fluid Flow, 33(1), 2023, 153-173.‏