[1] Ali H. Nayfeh, Mohammad I. Younis, "Modeling and simulations of thermoelastic damping in microplates", Journal of Micromechanics and Microengineering, 14 pp 1711–1717, 2004.
[2] Nayfeh A H and Younis M I., "A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping", Journal of Micromechanics and Microengineering, 14, pp 170–181, 2004.
[3] C. Zener, "Internal friction in solids I. Theory of internal friction in reeds", Physical Review, Volume 32, pp 230-235, 1937.
[4] C. Zener, "Internal friction in solids II. General theory of thermoelastic internal friction", Physical Review, Volume 53, pp 90-99, 1937.
[5] J. B. Alblas, "A note on the theory of thermoelastic damping", Journal of Thermal Stresses, Volume 4, Issue 3-4, pp 333-355, 1981.
[6] R. Lifshitz, M. L. Roukes, "Thermoelastic damping in micro- and nanomechanical systems", Physical Review B, Volume 61, Number 8, pp 5600-5609, 2000.
[7] Sudipto K. De, N. R. Aluru, "Theory of thermoelastic damping in electrostatically actuated microstructures", Physical Review B, 74, 144305, pp 1-13, 2006.
[8] S. Prabhakar, S. Vengallatore, "Theory of thermoelastic damping in micromechanical resonators with two-dimensional heat conduction", Journal of Microelectromechanical Systems, Vol. 17, No. 2, pp 494-502, 2008.
[9] Enrico Serra, and Michele Bonaldi, "A finite element formulation for thermoelastic damping analysis", International Journal for Numerical Methods in Engineering, 78, pp 671–691, 2009.
[10] F.L. Guo, G.A. Rogerson, "Thermoelastic coupling effect on a micro-machined beam resonator", Mechanics Research Communications, 30, pp 513–518, 2003.
[11] Yuxin Sun and Masumi Saka, "Thermoelastic damping in micro-scale circular plate resonators", Journal of Sound and Vibration 329, pp 328–337, 2009.
[12] Jinbok Choi, Maenghyo Cho, Jaewook Rhim, "Efficient prediction of the quality factors of micromechanical resonators", Journal of Sound and Vibration, 329, pp 84–95, 2010.
[13] Yun-Bo Yi, Mohammad A. Matin, "Eigenvalue Solution of Thermoelastic Damping in Beam Resonators Using a Finite Element Analysis", Journal of Vibration and Acoustics, Vol. 129, pp 478-483, 2007.
[14] Fargas Marqu`es A, Costa Castell´o R and Shkel A M, "Modelling the electrostatic actuation of MEMS: state of the art" Technical Report, pp 1-33, 2005.
[15] R. C. Batra, M. Porfiri, and D. Spinello, "Review of modeling electrostatically actuated microelectromechanical systems", Smart Materials and Structures, 16, pp 23–31, 2007.
[16] Abdel-Rahman E. M., Younis M. I. and Nayfeh A. H., "Characterization of the mechanical behavior of an electrically actuated microbeam", Journal of Micromechanics and Microengineering, 12, pp 759–66, 2002.
[17] Nayfeh A. H. and Younis M. I., "Dynamics of MEMS resonators under superharmonic and subharmonic excitations", Journal of Micromechanics and Microengineering, 15, pp 1840–7, 2005.
[18] Younis M. I. and Nayfeh A. H., "A study of the nonlinear response of a resonant microbeam to an electric actuation", Nonlinear Dynamics, 31, pp 91–117, 2003.
[19] Younis M. I., Abdel-Rahman E. M. and Nayfeh A. H., "A reduced-order model for electrically actuated microbeam-based MEMS", Journal of Microelectromech. System, 12, pp 672–80, 2003.
[20] Abdel-Rahman E. M. and Nayfeh A. H. "Secondary resonances of electrically actuated resonant microsensors", Journal of Micromechanics and Microengineering. 13, pp 491–501, 2003.
[21] Nayfeh A. H. and Younis M. I., "Dynamics of MEMS resonators under superharmonic and subharmonic excitations", Journal of Micromechanics and Microengineering, 15, pp 1840–7, 2005.
[22] Najar F., Choura S., Abdel-Rahman E. M., El-Borgi S. and Nayfeh A. H., "Dynamic analysis of variable-geometry electrostatic microactuators", Journal of Micromechanics and Microengineering, 14, pp 900–6, 2006.
[23] Zhao X., Abdel-Rahman E. M. and Nayfeh A. H., "A reduced-order model for electrically actuated microplates", Journal of Micromechanics and Microengineering, 14, pp 900–906, 2004.
[24] Vogl G. W. and Nayfeh A. H., "A reduced-order model for electrically actuated clamped circular plates", Journal of Micromechanics and Microengineering, 15, pp 684–90, 2005.
[25] R.E. Bellman, J. Casti, "Differential quadrature and long term integration", Journal of Mathematical Analysis and Applications, Volume 34, 235–238, 1971.
[26] Feng Y., Bert CW., “Application of the quadrature method to flexural vibration analysis of a geometrically nonlinear beam”, Nonlinear Dynamics, Volume 156, pp 3-18, 1993.
[27] Guo Q. Zhong H., “Nonlinear vibration analysis of beams by a spline-based differential quadrature method”, Journal of
Shock and Vibration, Volume 269, pp 413-420, 2004.
[28] Zhong H., Guo Q., “Nonlinear vibration analysis of Timoshenko beams using the differential quadrature method ”, Nonlinear Dynamics, Volume 32, pp 223-234.
[29] Han K. M., Xiao J. B., Du Z. M., “Differential quadrature method for Mindlin plates on Winkler foundations”, International Journal of Mechanical Sciences, Volume 38, pp 405-421, 1996.
[30] Liew K. M., Han J. B., Xiao Z. M., “Differential quadrature method for thick symmetric cross-ply laminates with first-order shear flexibility”, International Journal of Solids and Structures, Volume 33, pp 2647-2658, 1996.
[31] Liew K. M., Han J. B., “A four-node differential quadrature method for straight-sided quadrilateral Reissner/Mindlin plates”, Communications in Numerical Methods in Engineering, Volume 13, pp 73-81, 1997.
[32] Han J. B., Liew K. M., “An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates”, Computer Methods in Applied Mechanics and Engineering, Volume 141, pp 265-280, 1997.
[36] P. Malekzadeh, A. R. Vosoughi, “DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges”, Communications in Nonlinear Science and Numerical Simulation, Volume 14, pp. 906–915, 2009.
[37] Nayfeh A. H., Frank P. P., linear and nonlinear structural mechanics, New Jersey, John Wiley & Sons, pp 215-225, 2004.
[38] B. S. Sarma and T. K. Varadan, “Lagrange-Type Formulation for Finite Element Analysis of Non-Linear Beam Vibrations”, Journal of sound and vibration, Volume 86, pp. 61-70, 1983.
[39] A. Koochi, Hamid M. Sedighi, M. Abadyan, "Modeling the size dependent pull-in instability of beam-type NEMS using strain gradient theory" Latin American Journal of Solids and Structures, Volume 11, pp. 1806-1829, 2014.
[40] A. Koochi, H. Hosseini-Toudeshky, H. R. Ovesy, "modeling the influence of surface effect on instability of nano-cantilever in presence of van der waals force" Volume 13, No. 4, 1250072, 2013.