[1] R.P. Agarwal, Boundary Value Problems for High order Differential Equations, World Scientific, Singapore, 1986.
[2] W.T. Ang, Y.S. Park, Ordinary Differential Equations: Methods and Applications, Universal-Publishers, 2008.
[3] Sze-Bi Hsu, Ordinary Differential Equations with Applications, World Scientific,2006.
[4] C. Roberts, Ordinary Differential Equations: Applications, Models, and Computing, CRC Press, 2011.
[5] M. Heydari, G.B. Loghmani, S.M. Hosseini, An improved piecewise variational iteration method for solving strongly nonlinear oscillators, Comp. Appl. Math. 34 (2015) 215-249.
[6] M. Heydari, S.M. Hosseini, G.B. Loghmani, Numerical solution of singular IVPs of Lane-Emden type using integral operator and radial basis functions, Int. J. Ind. Math. 4(2) (2012) 135-146.
[7] E. Hosseini, G.B. Loghmani, M. Heydari, M.M. Rashidi, Numerical investigation of velocity slip and temperature jump effects on unsteady flow over a stretching permeable surface, Eur. Phys. J. Plus. 132 (2017) 96.
[8] M. Heydari, S.M. Hosseini, G.B. Loghmani, D.D. Ganji, Solution of strongly nonlinear oscillators using modified variational iteration method, Int. J. Nonlinear. Dyn. Eng. Sci. 3(1) (2011) 33-45.
[9] M.M. Hosseini, Syed Tauseef Mohyud-Din, S.M. Hosseini, M. Heydari, Study on hyperbolic Telegraph equations by using homotopy analysis method, Stud. Nonlinear Sci. 1(2) (2010) 50-56.
[10] Z. Nikooeinejad, A. Delavarkhalafi, M. Heydari, A numerical solution of open-loop Nash equilibrium in nonlinear differential games based on Chebyshev pseudospectral method, J. Comput. Appl. Math. 300 (2016) 369-384.
[11] Z. Nikooeinejad, A. Delavarkhalafi, M. Heydari, Application of shifted Jacobi pseudospectral method for solving (in)finite-horizon minmax optimal control problems with uncertainty, Int. J. Control 91(3) (2017) 725-739.
[12] Z. Nikooeinejad, M. Heydari, Nash equilibrium approximation of some class of stochastic differential games: A combined Chebyshev spectral collocation method with policy iteration, J. Comput. Appl. Math. 362 (2019) 41-54.
[13] M. Heydari, G. B. Loghmani, M. M. Rashidi, S. M. Hosseini, A numerical study for off-centered stagnation flow towards a rotating disc, J. Propul. Power. 4(3) (2015) 169-178.
[14] M. Tafakkori-Bafghi, G.B. Loghmani, M. Heydari, X. Bai, Jacobi-Picard iteration method for the numerical solution of nonlinear initial value problems, Math. Method. Appli. Sci. 43 (2020) 1084-1111.
[15] B. Ahmad, B.S. Alghamdi, Approximation of solutions of the nonlinear Duffing equation involving both integral and non-integral forcing terms with separated boundary conditions, Comput. Phys. Commun. 179 (2008) 409-416.
[16] Z. Avazzadeh, M. Heydari, The application of block pulse functions for solving higher-order differential equations with multipoint boundary conditions, Adv. Differ. Equ-NY. 93 (2016) 1-16.
[17] K. Chompuvised, A. Dhamacharoen, Solving boundary value problems of ordinary differential equations with non-separated boundary conditions, Appl. Math. Comput. 217 (2011) 10355-10360.
[18] F. Geng, M. Cui Multi-point boundary value problem for optimal bridge design, Int. J. Comput. Math. 87 (2010) 1051-1056.
[19] Siraj-ul-Islam, I. Aziz, B. arler, The numerical solution of second-order boundary-value problems by collocation method with the Haar wavelets, Math. Comput. Model. 52 (2010) 1577-1590.
[20] G.B. Loghmani, M. Ahmadinia, Numerical solution of sixth order boundary value problems with sixth degree B-spline functions, Appl. Math. Comput. 186 (2007) 992-999.
[21] G.B. Loghmani, S.R. Alavizadeh, Numerical solution of fourth-order problems with separated boundary conditions, Appl. Math. Comput. 191 (2007) 571-581.
[22] S.Yu. Reutskiy, A method of particular solutions for multipoint boundary value problems, Appl. Math. Comput. 243 (2014) 559-569.
[23] A. Saadatmandi, M. Dehghan, The use of Sinc-collocation method for solving multipoint boundary value problems, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 593-601.
[24] S.S. Siddiqi, E.H. Twizell, Spline solutions of linear sixth order boundary value problems, Int. J. Comput. Math. 60 (1996) 295-304.
[25] S.S. Siddiqi, G. Akram, Septic spline solutions of sixth-order boundary value problems, J. Comput. Appl. Math. 215 (2008) 288-301.
[26] S.E. Vedat, Solving nonlinear fifth-order boundary value problems by differential transformation method, Selçuk J. Appl. Math. 8 (2007) 45-49.
[27] A.M. Wazwaz, The numerical solution of fifth-order boundary value problems by the decomposition method, J. Comput. Appl. Math. 136 (2001) 259-270.
[28] C.F. Chen, C.H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proc. Contr. Theor. Appl. 144 (1997) 87-94.
[29] J. Majak, M. Pohlak, K. Karjust, M. Eerme, J. Kurnitski, B. Shvartsman, New higher order Haar wavelet method: Application to FGM structures, Compos. Struct. 201 (2018) 72-78.
[30] Ü. Lepik, Solving fractional integral equations by the Haar wavelet method, Appl. Math. Comput. 214 (2009) 468-78.
[31] X. Si, C. Wang, Y. Shen, L. Zheng, Numerical method to initial-boundary value problems for fractional partial differential equations with time-space variable coefficients, Appl. Math. Model. 40 (2016) 4397-411.
[32] J. Majak, B. Shvartsman, M. Pohlak, K. Karjust, M. Eerme, E. Tungel, Solution of fractional order differential equation by the Haar Wavelet method. Numerical convergence analysis for most commonly used approach, AIP. Conf. Proc. 1738 (1) (2016).
[33] A. Setia, B. Prakash, A.S. Vatsala, Haar based numerical solution of Fredholm-Volterra fractional integro-differential equation with nonlocal boundary conditions, AIP. Conf. Proc. 1798 (1) 2017.
[34] M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, C. Cattani, Wavelets methodfor solving fractional optimal control problems, Appl. Math. Comput. 286 (2016) 139-154.
[35] M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, C. Cattani, Wavelets method for the time fractional diffusion-wave equation, Phys. Lett. A 379 (2015) 71-6.
[36] Ö. Oruç, A non-uniform Haar wavelet method for numerically solving two-dimensional convection-dominated equations and two-dimensional near singular elliptic equations, Comput. Math. Appl. 77 (2019) 1799-1820.
[37] Ö. Oruç, F. Bulut, A. Esen, Numerical solutions of regularized long wave equation by Haar wavelet method, Mediterr. J. Math. 13 (2016) 3235-3253.
[38] Ö. Oruç, A. Esen, F. Bulut, A haar wavelet approximation for two-dimensional time fractional reaction-subdiffusion equation, Eng. Comput. 35 (2019) 75-86.
[39] Ö. Oruç, F. Bulut, A. Esen, A Haar wavelet-finite difference hybrid method for the numerical solution of the modified Burgers’ equation, J. Math. Chem. 53 (2015) 1592-1607.
[40] Ö. Oruç, F. Bulut, A. Esen, A numerical treatment based on Haar wavelets for coupled KdV equation, An Int. J. Opt. Cont. Theor. Appl. 7 (2017) 195-204.
[41] A. Aldroubi, M. Unser, Wavelets in Medicine and Biology, CRC Press, 1996.
[42] L. Debnath, F. Shah, Wavelet Transforms and Their Applications, 2nd Edition, Springer, 2014.
[43] Ü. Lepik, H. Hein, Haar Wavelets With Applications, Springer, 2014.
[44] Ü. Lepik, Solving PDEs with the aid of two-dimensional Haar wavelets, Comput. Math. Appl. 61 (2011) 1873-1879.
[45] Ü. Lepik, Numerical solution of differential equations using Haar wavelets, Math. Comput. Simul. 68 (2005) 127-143.
[46] A. Nguyen, P. Pasquier, adaptive segmentation Haar wavelet method for solving thermal resistance and capacity models of ground heat exchangers, Appl. Therm. Eng. 89 (2015) 70-79.
[47] H. Saeedi, N. Mollahasani, M.M. Moghadam, G.N. Chuev, An operational Haar wavelet method for solving fractional volterra integral equations, Int. J. Appl. Math. Comput. Sci. 21 (2011) 535-547.
[48] J.C. van den Berg, Wavelets in Physics, Cambridge University Press, 2004.
[49] B. walczak, Wavelets in Chemistry, Elsevier Science, 2000.
[50] J.S. Walker, A Primer on Wavelets and Their Scientific Applications, Chapman and Hall/CRC Press, 1999.
[51] Ö. Oruç, An efficient wavelet collocation method for nonlinear two-space dimensional Fisher-Kolmogorov-Petrovsky-Piscounov equation and two-space dimensional extended Fisher-Kolmogorov equation, Eng. Comput. DOI: 10.1007/s00366-019-00734-z.
[52] Ö. Oruç, F. Bulut, A. Esen, Chebyshev wavelet method for numerical solutions of soupled Burgers’ equation, Hacet. J. Math. Stat. 48 (2019) 1-16.
[53] Ö. Oruç, A. Esen, F. Bulut, A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers’ equation, Discret. Contin. Dyn. Syst.-Ser. S. 12 (2019) 533-542.
[54] E.J. Stollnitz, T.D. DeRose, D.H. Salesin, Wavelets for computer graphics: a Primer, Part 1, IEEE Comput. Graph. Appl. 15 (1995) 76-84.
[55] S. Islama,
B. Šarlera,
I. Azizb,
F. Haq, Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems,
Int. J. Therm. Sci. 50 (2011) 686-697.
[56] Ü. Lepik, Solving integral and differential equations by the aid of nonuniform Haar wavelets, Appl. Math. Comput. 198 (2008) 326-332.
[57] X. Xie, G. Jin, Y. Yan, S.X. Shi, Z. Liu, Free vibration analysis of composite laminated cylindrical shells using the Haar wavelet method, Compos. Struct. 109 (2014) 169-177.
[58] G. Jin, X. Xie, Z. Liu, The Haar wavelet method for free vibration analysis of functionally graded cylindrical shells based on the shear deformation theory, Compos. Struct. 108 (2014) 435-448.
[59] J. Majak, B. Shvartsman, K. Karjust, M. Mikola, A.Haavajōe, M. Pohlak, On the accuracy of the Haar wavelet discretization method, Compos. Part B 280 (2015) 321-327.
[60] M.M. Chawla, R. Subramanina, H. Sathi, A fourth order method for a singular two point boundary value problems, BIT 28 (1988) 88-97.
[61] H. Caglar, N. Caglar, M. Ozer, B-Spline solution of non-linear singular boundary value problems arising in physiology, Chaos Solitons Fractals 39 (2009) 1232-1237.
[62] A.M. Siddiqui, S. Irum, A.R. Ansari Unsteady squeezing flow of a viscous MHD fluid between parallel plates, a solution using the homotopy perturbation method, Math. Model. Anal. 13 (2008) 565-576.
[63] P. Roula, A new efficient recursive technique for solving singular boundary value problems arising in various physical models, Eur. Phys. J. Plus 131 (2016) 105-120.
[64] H. Temimi, A.R. Ansari, A new iterative technique for solving nonlinear second order multipoint boundary value problems, Appl. Math. Comput. 218 (2011) 1457-1466.