Haar Wavelet Method for Solving High-Order Differential Equations with Multi-Point Boundary Conditions

Document Type : Research Paper

Authors

1 Department of Mathematics, Yazd University, Yazd, Iran

2 Laboratory for Intelligent Computing and Financial Technology, Department of Mathematical Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China

3 University of Applied Science and Technology (UAST), Ghand Center, Karaj, Iran

Abstract

In This paper, the developed Haar wavelet method for solving boundary value problems is described. As known, the orthogonal Haar basis functions are applied widely for solving initial value problems, but In this study, the method for solving systems of ODEs associated with multipoint boundary conditions is generalized in separated or non-separated forms. In this technique, a system of high-order boundary value problems of ordinary differential equations is reduced to a system of algebraic equations. The experimental results confirm the computational efficiency and simplicity of the proposed method. Also, the implementation of the method for solving the systems arising in the real world for phenomena in fluid mechanics and construction engineering approves the applicability of the approach for a variety of problems.

Keywords

Main Subjects

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[1] R.P. Agarwal, Boundary Value Problems for High order Differential Equations, World Scientific, Singapore, 1986.
[2] W.T. Ang, Y.S. Park, Ordinary Differential Equations: Methods and Applications, Universal-Publishers, 2008.
[3] Sze-Bi Hsu, Ordinary Differential Equations with Applications, World Scientific,2006.
[4] C. Roberts, Ordinary Differential Equations: Applications, Models, and Computing, CRC Press, 2011.
[5] M. Heydari, G.B. Loghmani, S.M. Hosseini, An improved piecewise variational iteration method for solving strongly nonlinear oscillators, Comp. Appl. Math. 34 (2015) 215-249.
[6] M. Heydari, S.M. Hosseini, G.B. Loghmani, Numerical solution of singular IVPs of Lane-Emden type using integral operator and radial basis functions, Int. J. Ind. Math. 4(2) (2012) 135-146.
[7] E. Hosseini, G.B. Loghmani, M. Heydari, M.M. Rashidi, Numerical investigation of velocity slip and temperature jump effects on unsteady flow over a stretching permeable surface, Eur. Phys. J. Plus. 132 (2017) 96.
[8] M. Heydari, S.M. Hosseini, G.B. Loghmani, D.D. Ganji, Solution of strongly nonlinear oscillators using modified variational iteration method, Int. J. Nonlinear. Dyn. Eng. Sci. 3(1) (2011) 33-45.
[9] M.M. Hosseini, Syed Tauseef Mohyud-Din, S.M. Hosseini, M. Heydari, Study on hyperbolic Telegraph equations by using homotopy analysis method, Stud. Nonlinear Sci. 1(2) (2010) 50-56.
[10] Z. Nikooeinejad, A. Delavarkhalafi, M. Heydari, A numerical solution of open-loop Nash equilibrium in nonlinear differential games based on Chebyshev pseudospectral method, J. Comput. Appl. Math. 300 (2016) 369-384.
[11] Z. Nikooeinejad, A. Delavarkhalafi, M. Heydari, Application of shifted Jacobi pseudospectral method for solving (in)finite-horizon minmax optimal control problems with uncertainty, Int. J. Control 91(3) (2017) 725-739.
[12] Z. Nikooeinejad, M. Heydari, Nash equilibrium approximation of some class of stochastic differential games: A combined Chebyshev spectral collocation method with policy iteration, J. Comput. Appl. Math. 362 (2019) 41-54.
[13] M. Heydari, G. B. Loghmani, M. M. Rashidi, S. M. Hosseini, A numerical study for off-centered stagnation flow towards a rotating disc, J. Propul. Power. 4(3) (2015) 169-178.
[14] M. Tafakkori-Bafghi, G.B. Loghmani, M. Heydari, X. Bai, Jacobi-Picard iteration method for the numerical solution of nonlinear initial value problems, Math. Method. Appli. Sci. 43 (2020) 1084-1111.
[15] B. Ahmad, B.S. Alghamdi, Approximation of solutions of the nonlinear Duffing equation involving both integral and non-integral forcing terms with separated boundary conditions, Comput. Phys. Commun. 179 (2008) 409-416.
[16] Z. Avazzadeh, M. Heydari, The application of block pulse functions for solving higher-order differential equations with multipoint boundary conditions, Adv. Differ. Equ-NY. 93 (2016) 1-16.
[17] K. Chompuvised, A. Dhamacharoen, Solving boundary value problems of ordinary differential equations with non-separated boundary conditions, Appl. Math. Comput. 217 (2011) 10355-10360.
[18] F. Geng, M. Cui Multi-point boundary value problem for optimal bridge design, Int. J. Comput. Math. 87 (2010) 1051-1056.
[19] Siraj-ul-Islam, I. Aziz, B. arler, The numerical solution of second-order boundary-value problems by collocation method with the Haar wavelets, Math. Comput. Model. 52 (2010) 1577-1590.
[20] G.B. Loghmani, M. Ahmadinia, Numerical solution of sixth order boundary value problems with sixth degree B-spline functions, Appl. Math. Comput. 186 (2007) 992-999.
[21] G.B. Loghmani, S.R. Alavizadeh, Numerical solution of fourth-order problems with separated boundary conditions, Appl. Math. Comput. 191 (2007) 571-581.
[22] S.Yu. Reutskiy, A method of particular solutions for multipoint boundary value problems, Appl. Math. Comput. 243 (2014) 559-569.
[23] A. Saadatmandi, M. Dehghan, The use of Sinc-collocation method for solving multipoint boundary value problems, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 593-601.
[24] S.S. Siddiqi, E.H. Twizell, Spline solutions of linear sixth order boundary value problems, Int. J. Comput. Math. 60 (1996) 295-304.
[25] S.S. Siddiqi, G. Akram, Septic spline solutions of sixth-order boundary value problems, J. Comput. Appl. Math. 215 (2008) 288-301.
[26] S.E. Vedat, Solving nonlinear fifth-order boundary value problems by differential transformation method, Selçuk J. Appl. Math. 8 (2007) 45-49.
[27] A.M. Wazwaz, The numerical solution of fifth-order boundary value problems by the decomposition method, J. Comput. Appl. Math. 136 (2001) 259-270.
[28] C.F. Chen, C.H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proc. Contr. Theor. Appl. 144 (1997) 87-94.
[29] J. Majak, M. Pohlak, K. Karjust, M. Eerme, J. Kurnitski, B. Shvartsman, New higher order Haar wavelet method: Application to FGM structures, Compos. Struct. 201 (2018) 72-78.
[30] Ü. Lepik, Solving fractional integral equations by the Haar wavelet method, Appl. Math. Comput. 214 (2009) 468-78.
[31] X. Si, C. Wang, Y. Shen, L. Zheng, Numerical method to initial-boundary value problems for fractional partial differential equations with time-space variable coefficients, Appl. Math. Model. 40 (2016) 4397-411.
[32] J. Majak, B. Shvartsman, M. Pohlak, K. Karjust, M. Eerme, E. Tungel, Solution of fractional order differential equation by the Haar Wavelet method. Numerical convergence analysis for most commonly used approach, AIP. Conf. Proc. 1738 (1) (2016).
[33] A. Setia, B. Prakash, A.S. Vatsala, Haar based numerical solution of Fredholm-Volterra fractional integro-differential equation with nonlocal boundary conditions, AIP. Conf. Proc. 1798 (1) 2017. 
[34] M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, C. Cattani, Wavelets methodfor solving fractional optimal control problems, Appl. Math. Comput. 286 (2016) 139-154. 
[35] M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, C. Cattani, Wavelets method for the time fractional diffusion-wave equation, Phys. Lett. A 379 (2015) 71-6.
[36] Ö. Oruç, A non-uniform Haar wavelet method for numerically solving two-dimensional convection-dominated equations and two-dimensional near singular elliptic equations, Comput. Math. Appl. 77 (2019) 1799-1820.
[37] Ö. Oruç, F. Bulut, A. Esen, Numerical solutions of regularized long wave equation by Haar wavelet method, Mediterr. J. Math. 13 (2016) 3235-3253.
[38] Ö. Oruç, A. Esen, F. Bulut, A haar wavelet approximation for two-dimensional time fractional reaction-subdiffusion equation, Eng. Comput. 35 (2019) 75-86.
[39] Ö. Oruç, F. Bulut, A. Esen, A Haar wavelet-finite difference hybrid method for the numerical solution of the modified Burgers’ equation, J. Math. Chem. 53 (2015) 1592-1607.
[40] Ö. Oruç, F. Bulut, A. Esen, A numerical treatment based on Haar wavelets for coupled KdV equation, An Int. J. Opt. Cont. Theor. Appl. 7 (2017) 195-204.
[41] A. Aldroubi, M. Unser, Wavelets in Medicine and Biology, CRC Press, 1996.
[42] L. Debnath, F. Shah, Wavelet Transforms and Their Applications, 2nd Edition, Springer, 2014.
[43] Ü. Lepik, H. Hein, Haar Wavelets With Applications, Springer, 2014.
[44] Ü. Lepik, Solving PDEs with the aid of two-dimensional Haar wavelets, Comput. Math. Appl. 61 (2011) 1873-1879.
[45] Ü. Lepik, Numerical solution of differential equations using Haar wavelets, Math. Comput. Simul. 68 (2005) 127-143.
[46] A. Nguyen, P. Pasquier, adaptive segmentation Haar wavelet method for solving thermal resistance and capacity models of ground heat exchangers, Appl. Therm. Eng. 89 (2015) 70-79.
[47] H. Saeedi, N. Mollahasani, M.M. Moghadam, G.N. Chuev, An operational Haar wavelet method for solving fractional volterra integral equations, Int. J. Appl. Math. Comput. Sci. 21 (2011) 535-547.
[48] J.C. van den Berg, Wavelets in Physics, Cambridge University Press, 2004.
[49] B. walczak, Wavelets in Chemistry, Elsevier Science, 2000.
[50] J.S. Walker, A Primer on Wavelets and Their Scientific Applications, Chapman and Hall/CRC Press, 1999.
[51] Ö. Oruç, An efficient wavelet collocation method for nonlinear two-space dimensional Fisher-Kolmogorov-Petrovsky-Piscounov equation and two-space dimensional extended Fisher-Kolmogorov equation, Eng. Comput. DOI: 10.1007/s00366-019-00734-z.
[52] Ö. Oruç, F. Bulut, A. Esen, Chebyshev wavelet method for numerical solutions of soupled Burgers’ equation, Hacet. J. Math. Stat. 48 (2019) 1-16.
[53] Ö. Oruç, A. Esen, F. Bulut, A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers’ equation, Discret. Contin. Dyn. Syst.-Ser. S. 12 (2019) 533-542.
[54] E.J. Stollnitz, T.D. DeRose, D.H. Salesin, Wavelets for computer graphics: a Primer, Part 1, IEEE Comput. Graph. Appl. 15 (1995) 76-84.
[55] S. Islama, B. Šarlera, I. Azizb, F. Haq, Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems, Int. J. Therm. Sci. 50 (2011) 686-697.
[56] Ü. Lepik, Solving integral and differential equations by the aid of nonuniform Haar wavelets, Appl. Math. Comput. 198 (2008) 326-332.
[57] X. Xie, G. Jin, Y. Yan, S.X. Shi, Z. Liu, Free vibration analysis of composite laminated cylindrical shells using the Haar wavelet method, Compos. Struct. 109 (2014) 169-177.
[58] G. Jin, X. Xie, Z. Liu, The Haar wavelet method for free vibration analysis of functionally graded cylindrical shells based on the shear deformation theory, Compos. Struct. 108 (2014) 435-448.
[59] J. Majak, B. Shvartsman, K. Karjust, M. Mikola, A.Haavajōe, M. Pohlak, On the accuracy of the Haar wavelet discretization method, Compos. Part B 280 (2015) 321-327.
[60] M.M. Chawla, R. Subramanina, H. Sathi, A fourth order method for a singular two point boundary value problems, BIT 28 (1988) 88-97.
[61] H. Caglar, N. Caglar, M. Ozer, B-Spline solution of non-linear singular boundary value problems arising in physiology, Chaos Solitons Fractals 39 (2009) 1232-1237.
[62] A.M. Siddiqui, S. Irum, A.R. Ansari Unsteady squeezing flow of a viscous MHD fluid between parallel plates, a solution using the homotopy perturbation method, Math. Model. Anal. 13 (2008) 565-576.
[63] P. Roula, A new efficient recursive technique for solving singular boundary value problems arising in various physical models, Eur. Phys. J. Plus 131 (2016) 105-120.
[64] H. Temimi, A.R. Ansari, A new iterative technique for solving nonlinear second order multipoint boundary value problems, Appl. Math. Comput. 218 (2011) 1457-1466.