Higher-Order Slope Limiters for Euler Equation

Document Type : Research Paper


Department of Aerospace Engineering, Indian Institute of Space Science and Technology-Thiruvananthapuram,‎ Valiyamala, Thiruvananthapuram, 695547, India


High-resolution schemes are designed for resolving shocks without significant numerical dissipation and dispersion. Achieving higher-order and high-resolution is a challenging task because of the non-monotonicity of the higher-order schemes. In this article, we have presented second-order and third-order slope limiters having an improved shock resolution and accuracy. The present limiters are tested on one-dimensional and two-dimensional unstructured grids and compared with the existing limiters. The numerical result shows that the present limiters have an excellent shock resolving property and accuracy than other limiters. In blast wave problems, it has shown over 200% more accurate results than the other limiters.


Main Subjects

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. 

[1] Zipay, J. J., Modlin, C. T., Larsen, C. E., The Ultimate Factor of Safety for Aircraft and Spacecraft-Its History, Applications and Misconceptions, In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2016.
[2] Shao, Z., Riemann problem with delta initial data for the isentropic relativistic Chaplygin Euler equations, Zeitschrift für Angewandte Mathematik und Physik, 67(3), 2016, 66.
[3] Shao, Z., The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density–pressure relation, Zeitschrift für Angewandte Mathematik und Physik, 69(2), 2018, 44.
[4] Zhang, W., Wang, T., Bai, J. S., Li, P., Wan, Z. H., Sun, D. J., The piecewise parabolic method for Riemann problems in nonlinear elasticity, Scientific Reports, 7(1), 2017, 1-17.
[5] Jiang, G.S., Shu, C. W, Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 126(1), 1996, 202-228.
[6] Appadu, A. R., Peer, A. A. I., Optimized weighted essentially non-oscillatory third-order schemes for hyperbolic conservation laws, Journal of Applied Mathematics, 2013, Article ID 428681.
[7] Zhang, D., Jiang, C., Liang, D., Cheng, L., A review on TVD schemes and a refined flux-limiter for steady-state calculations, Journal of Computational Physics, 302, 2015, 114-154.
[8] van Leer, B., Towards the ultimate conservative difference scheme. ii. monotonicity and conservation combined in a second-order scheme, Journal of Computational Physics, 14(4), 1974, 361-370.
[9] Hirsch, C., Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics, Butterworth-Heinemann, 2007.
[10] Sweby, P. K., High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws, SIAM Journal on Numerical Analysis, 1984, 995-1011.
[11] Colella, P., Woodward, P. R., The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, Journal of Computational Physics, 54(1), 1984, 174-201.
[12] Suresh, A., Huynh, H. T., Accurate monotonicity-preserving schemes with Runge-Kutta time stepping, Journal of Computational Physics, 136(1), 1997, 83-99.
[13] Marquina, A., Local Piecewise Hyperbolic Reconstruction of Numerical Fluxes for Nonlinear Scalar Conservation Laws, SIAM J. ScI. Compt.,15(4), 1994, 892-915.
[14] Waterson, N. P., Deconinck, H., Design principles for bounded higher-order convection schemes - a unified approach, Journal of Computational Physics, 244(1), 2007, 182-207.
[15] van Albada G. D., Leer, B. V., Roberts W. W., A Comparative Study of Computational Methods in Cosmic Gas Dynamics, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.
[16] Warming R. F., Beam R. M., Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows, AIAA Journal, 14(9), 1976, 1241-1249.
[17] Fromm, J. E., A method for reducing dispersion in convective difference schemes, Journal of Computational Physics, 3(2), 1968, 176-189.
[18] Agarwal R.K., A third-order-accurate upwind scheme for Navier-Stokes solutions at high Reynolds numbers, 19th Aerospace Science Meeting, 1981.
[19] Leonard B. P., A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering, 19(1), 1979, 59-98.
[20] Roe, P. L., Baines, M. J., Algorithms for advection and shock problems, Numerical Methods in Fluid Mechanics, 1982, 281-290.
[21] Roe, P. L., Some contributions to the modelling of discontinuous flows, Large-scale Computations in Fluid Mechanics, 1985, 163-193.
[22] van Leer, B., Towards the ultimate conservative difference scheme. iv. a new approach to numerical convection, Journal of Computational Physics, 23(3), 1977, 276-299.
[23] van Albada G. D., van Leer, B., Roberts W. W., A comparative study of computational methods in cosmic gas dynamics, In: Hussaini M.Y., van Leer B., Van Rosendale J. (eds) Upwind and High-Resolution Schemes. Springer, Berlin, Heidelberg, 1997.
[24] Zhou, G., Numerical simulations of physical discontinuities in single and multi-fluid flows for arbitrary Mach numbers, Chalmers University of Technology, 1995.
[25] Ray, D., Chandrashekar, P., Fjordholm, U. S., Mishra, S., Entropy stable scheme on two-dimensional unstructured grids for Euler equations, Communications in Computational Physics, 19(5), 2016, 1111-1140.
[26] Koren, B., A robust upwind discretization method for advection, diffusion and source terms, Centrum voor Wiskunde en Informatica, Amsterdam, 1993.
[27] Chatkravathy, S. R., High resolution applications of the Osher upwind scheme for the Euler equations, AIAA paper 83-1943. In Proc. AIAA 6th Computational Fluid Dynamics Conference, 1983.
[28] Waterson, N.P., Deconinck, H., Design principles for bounded higher-order convection schemes-a unified approach, Journal of Computational Physics, 224(1), 2007, 182-207.
[29] Gaskell, P. H., Lau, A. K. C., Curvature-compensated convective transport: Smart, a new boundedness- preserving transport algorithm, International Journal for Numerical Methods in Fluids, 8(6), 1988, 617-641.
[30] Lien, F. S., Leschziner, M. A., Upstream monotonic interpolation for scalar transport with application to complex turbulent flows, International Journal for Numerical Methods in Fluids, 19(6), 1994, 527-548.
[31] Goodman, J. B., LeVeque, R. J., On the Accuracy of Stable Schemes for 2D Scalar Conservation Laws, Mathematics of Computation, 1985, 15-21.
[32] Kumar, R., Kadalbajoo, M. K., Efficient high-resolution relaxation schemes for hyperbolic systems of conservation laws, International Journal for Numerical Methods in Fluids, 55(5), 2007, 483-507.
[33] Kadalbajoo, M. K., Kumar, R., A high resolution total variation diminishing scheme for hyperbolic conservation law and related problems, Applied Mathematics and Computation, 175(2), 2006, 1556-1573.
[34] Kumar, R., Flux limited schemes: Their classification and accuracy based on total variation stability regions, Applied Mathematics and Computation, 224, 2013, 325-336.
[35] Kitamura, K., Roe, P. L., Ismail, F., An Evaluation of Euler Fluxes for Hypersonic Flow Computations, AIAA Journal, 47(1), 2007, 44-53.
[36] Neelan A. G., Nair, M. T., Hyperbolic Runge-Kutta method using Genetic Algorithm, Journal of Computational and Nonlinear Dynamics, 13(10), 2018, 101003.
[37] Masatsuka, K., I do Like CFD, Volume 1. Lulu.com, 2013.
[38] Liu, X. D., Osher, S., Convex ENO high order multi-dimensional schemes without field-by-field decomposition or staggered grids, Journal of Computational Physics, 142(2), 1998, 304–330.
[39] Cada, M., Torrilhon, M., Compact third-order limiter functions for finite volume methods, Journal of Computational Physics, 228(11), 2009, 4118-4145.
[40] Bryson A. E. Jr., An experimental investigation of transonic flow past two-dimensional wedge and circular-arc sections using a mach-zehnder interferometer, NASA, Langley Research Center, Tech. Report, 1952.
[41] Samaneiego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V. M., Guo, H., Hamdia, K., Rabczuk, T., An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications, Computer Methods in Applied Mechanics and Engineering, 362, 2020, 112790.