Transient Response of Longitudinal Fins under Step Changes in ‎Base Temperature and Heat Flux using Lattice Boltzmann ‎Method

Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, National Institute of Technology Raipur, Chhattisgarh, 492010, India

2 Department of Mechanical Engineering, National Institute of Technology Raipur, Chhattisgarh, 492010, India‎

Abstract

The present article reports the transient response of longitudinal fins having linear and non-linear temperature dependent thermal conductivity, convection coefficient and internal heat generation under two cases of base boundary condition, (i) step change in base temperature and (ii) step change in base heat flux. The fin tip is assumed to be adiabatic. Both, linear and non-linear, temperature dependency of thermo-physical properties is addressed in the mathematical formulation and the solution for the above cases is obtained using Lattice Boltzmann method (LBM) implemented in an in-house source code. LBM, being a dynamic method, simulates the macroscopic behavior by using a simple mesoscopic model and offers enormous advantages in terms of simple algorithm to handle even the most typical of boundary conditions that are easy and compact to program even in case of complicated geometries too. Although the transient response of longitudinal fins has been reported earlier, however power law variation of thermophysical properties for the above two base condition has not been reported till date. The present article first establishes the validity of LBM code with existing result and then extends the code for solving the transient response of the longitudinal fin under different sets of application-wise relevant conditions that have not been treated before. Results are reported for several combination of thermal parameter and are depicted in form of graphs.

Keywords

Main Subjects

[1] Mohamad, A. A., Lattice Boltzmann Method, Springer, London, 2011.
[2] Kruger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. and Viggen, E., The lattice Boltzmann method: principles and practice, Springer International Publishing AG Switzerland, 2016.
[3] McNamara, G.R., and Zanetti, G., Use of the Boltzmann equation to simulate lattice-gas automata, Physical Review Letters, 61(20), 1988, 2332.
[4] Mishra, S. C., Lankadasu, A., Transient conduction-radiation heat transfer in participating media using the lattice Boltzmann method and the discrete transfer method, Numerical Heat Transfer, Part A: Applications, 47(9), 2005, 935-954.
[5] Mishra, S. C., Lankadasu, A., Beronov, K. N., Application of the lattice Boltzmann method for solving the energy equation of a 2-D transient conduction–radiation problem, International Journal of Heat and Mass Transfer, 48(17), 2005, 3648-3659.
[6] Gupta, N., Gorthi, R. C., Mishra, S. C., Lattice Boltzmann method applied to variable thermal conductivity conduction and radiation problems, Journal of Thermophysics and Heat Transfer, 20(4), 2006, 895-902.
[7] Mishra, S. C., Krishna, N. A., Gupta, N., Chaitanya, G. R., Combined conduction and radiation heat transfer with variable thermal conductivity and variable refractive index, International Journal of Heat and Mass Transfer, 51(1-2), 2008, 83-90.
[8] Mahmoudi, A., Mejri, I., Analysis of conduction-radiation heat transfer with variable thermal conductivity and variable refractive index: application of the Lattice Boltzmann method, International Journal of Heat and Technology, 33(1), 2015, 1-8.
[9] Mahmoudi, A., Mejri, I., Abbassi, M. A., Omri, A., Analysis of Conduction-Radiation Heat Transfer in a Planar Medium: Application of the Lattice Boltzmann Method, Int. J. of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 8(7), 2014, 1314-1320.
[10] Hamila, R., Chaabane, R., Askri, F., Jemni, A., & Nasrallah, S. B., Lattice Boltzmann method for heat transfer problems with variable thermal conductivity, International Journal of Heat and Technology, 35(2), 2017, 313-324.
[11] Rahmati, A., Gheibi, A., Using the Lattice Boltzmann Method for the numerical study of non-fourier conduction with variable thermal conductivity, Journal of Heat and Mass Transfer Research, 5(1), 2018, 1-9.
[12] Varmazyar, M., Bazargan, M., Development of a thermal lattice Boltzmann method to simulate heat transfer problems with variable thermal conductivity, International Journal of Heat and Mass Transfer, 59, 2013, 363-371.
[13] Mohamad, A. A., Lattice Boltzmann method for heat diffusion in axis-symmetric geometries, Progress in Computational Fluid Dynamics, an International Journal, 9(8), 2009, 490-494.
[14] Mishra, S. C., Mondal, B., Kush, T., Krishna, B. S. R., Solving transient heat conduction problems on uniform and non-uniform lattices using the lattice Boltzmann method, International Communications in Heat and Mass Transfer, 36(4), 2009, 322-328.
[15] Mondal, B., Mishra, S. C., Lattice Boltzmann method applied to the solution of the energy equations of the transient conduction and radiation problems on non-uniform lattices, International Journal of Heat and Mass Transfer, 51(1-2), 2008, 68-82.
[16] Mondal, B., Mishra, S. C., Application of the lattice Boltzmann method and the discrete ordinates method for solving transient conduction and radiation heat transfer problems, Numerical Heat Transfer, Part A: Applications, 52(8), 2007, 757-775.
[17] Bamdad, K., Ashorynejad, H. R., Inverse analysis of a rectangular fin using the lattice Boltzmann method, Energy Conversion and Management, 97, 2015, 290-297.
[18] Házi, G., Márkus, A., Modeling heat transfer in supercritical fluid using the lattice Boltzmann method, Physical Review E, 77, 2008, 1-10.
[19] Tu, Y. D., Wang, R. Z., Ge, T. S., Zheng, X., Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers, Scientific Reports, 7, 2017, 40437.
[20] Zebarjadi, M., Heat management in thermoelectric power generators, Scientific Reports, 6, 2016, 20951.
[21] Dannelley, D., Baker, J., Natural convection heat transfer from fractal-like fins, Journal of Thermophysics and Heat Transfer, 27(4), 2013, 692-699.
[22] Chen, Y., & Cheng, P., Heat transfer and pressure drop in fractal tree-like microchannel nets, International Journal of Heat and Mass Transfer, 45(13), 2002, 2643-2648.
[23] Suryanarayana, N. V., Transient response of straight fins, Journal of Heat Transfer, 97(3), 1975, 417-423.
[24] Donaldson, A. B., Shouman, A. R., Unsteady-state temperature distribution in a convecting fin of constant area, Applied Scientific Research, 26(1), 1972, 75-85.
[25] Suryanarayana, N. V., Transient response of straight fins: Part II, Journal of Heat Transfer, 98(2), 1976, 324-326.
[26] Assis, E., Kalman, H., Transient temperature response of different fins to step initial conditions, International Journal of Heat and Mass Transfer, 36(17), 1993, 4107-4114.
[27] Kraus, A. D., Aziz, A., Welty, J., Sekulic, D. P., Extended surface heat transfer, Appl. Mech. Rev., 54(5), 2001, B92-B92.
[28] Chang, M. H., A decomposition solution for fins with temperature dependent surface heat flux, International Journal of Heat and Mass Transfer, 48(9), 2005, 1819-1824.
[29] Lesnic, D., Heggs, P. J., A decomposition method for power-law fin-type problems, International Communications in Heat and Mass Transfer, 31(5), 2004, 673-682.
[30] Malekzadeh, P., Rahideh, H., Karami, G., A differential quadrature element method for nonlinear transient heat transfer analysis of extended surfaces, Numerical Heat Transfer, Part A: Applications, 49(5), 2006, 511-523.
[31] Moitsheki, R. J., Harley, C., Transient heat transfer in longitudinal fins of various profiles with temperature-dependent thermal conductivity and heat transfer coefficient, Pramana, 77(3), 2011, 519-532.
[32] Incropera, F. P., Lavine, A. S., Bergman, T. L., DeWitt, D. P., Fundamentals of heat and mass transfer, Wiley, 2007.
[33] Moitsheki, R. J., Hayat, T., Malik, M. Y., Some exact solutions of the fin problem with a power law temperature-dependent thermal conductivity, Nonlinear Analysis: Real World Applications, 11(5), 2010, 3287-3294.
[34] Mosayebidorcheh, S., Ganji, D. D., Farzinpoor, M., Approximate solution of the nonlinear heat transfer equation of a fin with the power-law temperature-dependent thermal conductivity and heat transfer coefficient, Propulsion and Power Research, 3(1), 2014, 41-47.
[35] Minkler, W. S., Rouleau, W. T., The effects of internal heat generation on heat transfer in thin fins, Nuclear Science and Engineering, 7(5), 1960, 400-406.
[36] Ünal, H. C., Temperature distributions in fins with uniform and non-uniform heat generation and non-uniform heat transfer coefficient, International Journal of Heat and Mass Transfer, 30(7), 1987, 1465-1477.
[37] Razelos, P., Satyaprakash, B. R., Analysis and optimization of convective trapezoidal profile pin fins with internal heat generation, International Communications in Heat and Mass Transfer, 23(5), 1996, 643-654.
[38] Kundu, B., Das, P. K., Optimum profile of thin fins with volumetric heat generation: a unified approach, Journal of Heat Transfer, 127(8), 2005, 945-948.
[39] Sobamowo, M. G., Analysis of convective longitudinal fin with temperature-dependent thermal conductivity and internal heat generation, Alexandria Engineering Journal, 56(1), 2017, 1-11.
[40] Ghasemi, S. E., Hatami, M., Ganji, D. D., Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation, Case Studies in Thermal Engineering, 4, 2014, 1-8.
[41] Mosayebidorcheh, S., Farzinpoor, M., Ganji, D. D., Transient thermal analysis of longitudinal fins with internal heat generation considering temperature-dependent properties and different fin profiles, Energy Conversion and Management, 86, 2014, 365-370.
[42] Mhlongo, M. D., Moitsheki, R. J., Makinde, O. D., Transient response of longitudinal rectangular fins to step change in base temperature and in base heat flow conditions, International Journal of Heat and Mass Transfer, 57(1), 2013, 117-125.
[43] Niu, X. D., Shu, C., Chew, Y. T., Wang, T. G., Investigation of stability and hydrodynamics of different lattice Boltzmann models, Journal of Statistical Physics, 117(3-4), 2004, 665-680.
[44] Olver, P.J., Applications of Lie groups to differential equations, Springer Science & Business Media, 2000.
[45] Bluman, G. W., Kumei, S., Symmetries and differential equations, Springer Science & Business Media, 2013.