Meshfree Collocation Method for the Numerical Solution of ‎Higher Order KdV Equation

Document Type : Research Paper


School of Mathematics, Department of Mathematics, Northwest University, Xi’an, 710127, P. R. China


In this paper, an efficient meshfree collocation scheme based on meshfree radial basis function is implemented for the numerical solution of 7th-order Korteweg-de Vires (KdV) equations. The demand of meshless techniques increment because of its meshless nature and simplicity of usage in higher dimensions. The proposed numerical scheme is tested on several test problems. The efficiency and accuracy of the suggested scheme is analyzed via ||L|| and ||L||2 error norms.


Main Subjects

[1]‎ Salas, A. H., GómezS, C. A., Frias, B. A., Computing Exact Solutions to a Generalized Lax-Sawada-KoteraIto Seventh-Order KdV Equation, ‎Mathematical Problems in Engineering, 2010, Article ID 524567, 7 pages.‎
‎[2]‎ Parkes, E. J., Duffy, B. R., An automated tanh-function method for ending solitary wave solutions to nonlinear evolution equations, ‎Computer Physics Communications, 98(3), 1996, 288–300.‎
‎[3]‎ Kashkari, B. S., Bakodah, H. O., New Modification Of Laplace Decomposition Method for Seventh Order KdV Equation, AIP Conference ‎Preceedings, 1558(1), 2013, 2435-2439.‎
‎[4]‎ Ludu, A., Draayer, J. P., Nonlinear Models of Liquid drops as Solitary wave, Physical Review Letters, 80(10), 1998, 2125–2128.‎
‎[5]‎ Reatto,L., Galli, D., What is ROTON?, Modern Physics B, 13(5), 1999, 607–616.‎
‎[6]‎ Turitsyn, S., Aceves, A., Jones, C., Zharnitsky, V., Average dynamics of the optical soliton in communication lines with dispersion ‎management, Analytical results, Physical Review E, 58(1), 1998, 48–51.‎
‎[7]‎ Das, G., Sarma, J., A new mathematical approach for finding the solitary waves in dusty plasma, Physics of Plasmas, 6(11), 1999, 4394–‎‎4397.‎
‎[8]‎ Osborne, A. R., The inverse scattering transform: Tools for the nonlinear fourier analysis and filtering of ocean surface waves, Chaos, ‎Soliton & Fractals, 5(12), 1995, 2623–2637.‎
‎[9]‎ Ostrovsky, L. A., Stepanyants, Y. A., Do internal solitions exist in the ocean?, Reviews of Geophysics, 27(3), 1989, 293–310.‎
‎[10]‎ Ganji, D. D., Abdollazadeh, M., Exact travelling solution for Lax’s seventh-order KdV equation by sech method and rational exp-‎function method, Applied Mathematics and Computation, 206(1), 2008, 438–444.‎
‎[11]‎ Ganji, D. D., Davodi, A. G., Geraily, Y. A., New exact solution for seventh-order Sawada-Kotera-Ito, Lax and Kaup-Kaupershmidt ‎equations using Exp-function method, Mathematical Methods in the Applied Sciences, 33(2), 2010, 167–176.‎
‎[12]‎ Salah, A. H., Computing exact solutions to a generalized Lax seventh-order forced KdV equation (KdV7), Applied Mathematics and ‎Computation, 216(8), 2010, 2333–2338.‎
‎[13]‎ Salah, A. H., Gómez, S., Cesar, A., Application of the Cole-Hopf Transformation for finding exact solutions to several forms of the ‎seventh-order KdV equation, Mathematical Problems in Engineering, 2010, Article ID 194329.‎
‎[14]‎ Soliman, A. A., A numerical simulation and explicit solutions of KdV Burgers and Lax’s seventh-order KdV equations, Chaos, Solitons ‎& Fractals, 29(2), 2006, 294–302.‎
‎[15]‎ Darvishi, M. T., Kheybaria, A. S., Khani, F., A Numerical Solution of the Lax’s 7th-order KdV Equation by Pseudospectral Method and ‎Darvishi’s Preconditioning, International Journal of Contemporary Mathematical Sciences, 2(22), 2007, 1097– 1106.‎
‎[16]‎ Alzaid, N. A., Alrayiqi, B. A., Approximate Solution Method of the Seventh Order KdV Equations by Decomposition Method, Journal of ‎Applied Mathematics and Physics, 7(9), 2019, 2148–2155.‎
‎[17]‎ Joshi, N., Lustri, C. J., Generalized Solitary Waves in a Finite-Difference Korteweg-de Vries Equation, Studies in Applied Mathematics, ‎‎142(3), 2019, 359–384.‎
‎[18]‎ Ahmad, H., Seadawy, A. R., Khan, T. A., Thounthong, P., Analytic approximate solutions for some nonlinear Parabolic dynamical wave ‎equations, Journal of Taibah University for Science, 14(1), 2020, 346-358.‎
‎[19]‎ Ahmad, H., Khan, T. A., Variational iteration algorithm I with an auxiliary parameter for the solution of differential equations of ‎motion for simple and damped mass–spring systems, Noise & Vibration Worldwide, 51(1-2), 2020, 12-20.‎
‎[20]‎ Ahmad, I., Ahmad, H., Abouelregal, A. E., Thounthong, P., Abdel-Aty, M., Numerical study of integer-order hyperbolic telegraph model ‎arising in physical and related sciences, The European Physical Journal Plus, 135(9), 2020, 1-14.‎
‎[21]‎ Inc, M., Khan, M. N., Ahmad, I., Yao, S. W., Ahmad, H., Thounthong, P., Analysing time-fractional exotic options via efficient local ‎meshless method, Results in Physics, 19, 2020, 103385.‎
‎[22]‎ Islam, S., Haq, S., Ali, A., A meshfree method for the numerical solution of the RLW equation, Journal of Computational and Applied ‎Mathematics, 223(2), 2009, 997-1012.‎
‎[23]‎ Ahmad, I., Siraj-ul-Islam, Khaliq, A. Q. M., Local RBF method for multi-dimensional partial differential equations, Computers & ‎Mathematics with Applications, 74(2), 2017, 292-324.‎
‎[24]‎ Shu, C., Differential quadrature and its application eingineering, Springer-Verlag, London, 2000.
‎[25]‎ Wei, S., Chen, W., Hon, Y. C., Implicit local radial basis function method for solving two dimensional time fractional diffusion equations, Thermal Science, 19(1), 2015, S59-S67.
‎[26]‎ Mirzaee, F., Samadyar, N., Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection-diffusion equation, Engineering with Computers, 36, 2020, 1673–1686.‎
‎[27]‎ Ali, A., Islam, S., Haq, S., A Computational Meshfree Technique for the Numerical Solution of the Two Dimensional Coupled Burgers’ ‎Equations, International Journal for Computational Methods in Engineering Science and Mechanics, 10(5), 2009, 406–422.‎
‎[28]‎ Mohyud-Din, S. T., Negahdary, E., Usman, M., A Meshless Numerical Solution of the Family of Generalized Fifth-order Korteweg-de ‎Vries Equations, Mathematics Faculty Publications, 22(10), 2012, 641–658.‎
‎[29]‎ Dehghan, M., Nikpour, A., Numerical solution of the system of second-order boundary value problems using the local radial basis ‎functions based differential quadrature collocation method, Applied Mathematical Modelling, 37(18-19), 2013, 8578–8599.‎
‎[30]‎ Dereli, Y., Dag, I., Numerical solutions of the Kawahara type equations using radial basis functions, Numerical Methods for Partial Differential Equations,28(2), 2012, 542-553.
‎[31]‎ Soleymani, F., Zaka-ullah, M., A multiquadric RBF-FD scheme for simulating the financial HHW equation utilizing exponential ‎integrator, Calcolo, 55, 2018, 51.‎
‎[32]‎ Khan, M. N., Ahmad, I., Ahmad, H., A radial basis function collocation method for space-dependent inverse heat problems, Journal of Applied and Computational Mechanics, 6(SI), 2020, 1187-1199.‎
‎[33]‎ Hussain, M., Haq, S., A hybrid radial basis functions collocation technique to numerically solve fractional advection-diffusion models, Numerical Methods for Partial Differential Equations, 36(6), 2020, 1254-1279.
‎[34]‎ Shivanian, E., Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis, Numerical Methods for Partial Differential Equations, 33(3), 2017, 974-994.
‎[35]‎ Srivastava, H. M., Ahmad, H., Ahmad, I., Thounthong, P., Khan, M. N., Numerical simulation of three-dimensional fractional-order ‎convection-diffusion PDEs by a local meshless method, Thermal Science, 2020, 210-210.‎
‎[36]‎ Assari, P., Dehghan, M., A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions, The European Physical Journal Plus, 132(5), 2017, 199.
‎[37]‎ Golbabai, A., Nikan, O., Tousi, J. R., Note on using radial basis functions method for solving nonlinear integral equations, Communications in Numerical Analysis, 2016(2), 2016, 81-91.
‎[38]‎ Assari, P., The numerical solution of Fredholm-Hammerstein integral equations by combining the collocation method and radial basis functions, Filomat, 33(3), 2019, 667-682.
‎[39]‎ Cavoretto, R., Rossi, A. D., Mukhametzhanov, M. S., Sergeyev, Y. D., On the search of the shape parameter in radial basis function using ‎univariate global optimization methods, Journal of Global Optimization, 2019.‎.
‎[40]‎ Fasshauer, G., MATH 590: Meshfree Methods Chapter 2: Radial basis function interpolation in MatLab, Department of Applied ‎Mathematics, Illinois Institute of Technology, Chicago, USA, 2010.‎