Turbulent Forced Convection and Entropy Generation of โ€ŽImpinging Jets of Water-Al2O3 Nanofluid on Heated Blocks

Document Type : Research Paper

Authors

LEAP Laboratory, Department of Mechanical Engineering, University of Mentouri Brothers -Constantine 1, Route de Ain El Bey, Constantine,2500, Algeria

Abstract

A computational analysis on water-Al2O3 nanofluid turbulent forced convection is performed to analyze heat transfer and entropy production in a channel containing heated blocks, cooled by impinging jets. The two phase mixture model (TPMM) is used. The increase in the Reynolds number (Re) and the volume fraction of nanoparticles (φ), the decrease in spacing between the heated block (Db) and moving the location of the second jet (J2) to the first jet (J1) contribute to increasing the heat transfer rate (HTR).In addition, the TPMM gives higher values of average Nusselt number (Nu) ฬ… than the single-phase model (SPM). The thermal (๐‘†๐‘”ฬ‡ ,๐‘กโ„Ž), frictional (๐‘†๐‘”ฬ‡ ,๐œˆ) and total (๐‘†๐‘”ฬ‡ ,๐‘ก) entropy generation values increase with Re and φ. When Db is reduced, ๐‘†๐‘”ฬ‡,๐‘ก increases. However, ๐‘†๐‘”ฬ‡ ,๐‘ก increases when the jet position vary from J2 to J1. Different correlations are proposed for Nu ฬ…. Our results are compared with data available in the literature.

Keywords

Main Subjects

‎[1]‎ Menni, Y., Ghazvini, M., Ameur, H., Hossein, Ahmadi, M., Sharifpur, M., Sadeghzadeh, M., Numerical calculations of the thermal aerodynamic ‎characteristics in a solar duct with multiple V-baffles, Engineering Applications of Computational Fluid Mechanics, 14(1), 2020, 1173–1197.‎
‎[2]‎ Menni, Y., Ghazvini, M., Ameur, H., Kim, M., Ahmadi, M.H., Sharifpur, M., Combination of baffling technique and high thermal conductivity ‎fluids to enhance the overall performances of solar channels, Engineering with Computers, 2020, https://doi.org/10.1007/s00366-020-01165-x.‎
‎[3]‎ Menni, Y., Chamkha, A.J., Azzi, A., Fluid Flow and Heat Transfer over Staggered ๊žŒ+๊žŒ Shaped Obstacles, Journal of Applied and Computational ‎Mechanics, 6(4), 2020, 741-756.‎
‎[4]‎ Menni, Y., Azzi, A., Chamkha, A., Enhancement of convective heat transfer in smooth air channels with wall-mounted obstacles in the flow ‎path, Journal of Thermal Analysis and Calorimetry, 135, 2019, 1951–1976.‎
‎[5]‎ Sobamowo, M.G., Free Convection Flow and Heat Transfer of Nanofluids of Different Shapes of Nano-Sized Particles over a Vertical Plate at Low ‎and High Prandtl Numbers, Journal of Applied and Computational Mechanics, 5(1), 2020, 13-39.‎
‎[6]‎ Hamzah , H.K., Ali , F.H., M., Hatami , Jing, D., Effect of Two Baffles on MHD Natural Convection in U-Shape Superposed by Solid Nanoparticle ‎having Different Shapes, Journal of Applied and Computational Mechanics, 6(SI), 2020, 1200-1209.‎
‎[7]‎ Paulraj, M.P., Byon, C., Vallati, A., Parthasarathy, R.K., A Numerical Investigation of Flow and Heat Transfer of Laminar Multiple Slot Jets ‎Impinging on Multiple Protruding Heat Sources, Heat Transfer Engineering, 2018, 1-53.‎
‎[8]‎ Menni, Y., Chamkha, A.J., Massarotti, N., Ameur, H., Kaid, N., Bensafi, M., Hydrodynamic and thermal analysis of water, ethylene glycol and ‎water-ethylene glycol as base fluids dispersed by aluminum oxide nano-sized solid particles, International Journal of Numerical Methods for Heat ‎and Fluid Flow, 30(9), 2019, 4349-4386.‎
‎[9]‎ Rahim, K.A., Ahmed, M.A., Numerical investigation on the heat transfer enhancement using a confined slot impinging jet with nanofluid, ‎Propulsion and Power Research, 8(4), 2019, 351-361.‎
‎[10]‎ Menni, Y., Chamkha, A.J., Zidani, C., Benyoucef, B., Numerical analysis of heat and nanofluid mass transfer in a channel with detached and ‎attached baffle plates, International Journal of Numerical Methods for Heat and Fluid Flow, 6(1), 2019, 52-60.‎
‎[11]‎ Menni, Y., Chamkha, A.J., Zidani, C., Benyoucef, B., Heat and nanofluid transfer in baffled channels of different outlet models, Mathematical ‎Modeling of Engineering Problems, 6(1), 2019, 21-28.‎
‎[12]‎ Menni, Y., Chamkha, A.J., Ahmed, A., Nanofluid flow in complex geometries - a review, Journal of Nanofluids, 8(5), 2018, 893-916.‎
‎[13]‎ Younes, M., Ahmed, A., Ali .J. C., Nanofluid Transport in Porous Media: A Review, Special Topics & Reviews in Porous Media, An International ‎Journal, 9(4), 2018, 1–16.‎
‎[14]‎ Abdelrehim,O., Khater, A., Mohamad, A.A., Radwan, A., Two-phase simulation of nanofluid in a confined single impinging jet, Case Studies in ‎Thermal Engineering,14, 2019, 100423.‎
‎[15]‎ Sheikholeslami, M., Abohamzeh, E., Jafaryar, M., Shafee, A., Babazadeh, H., CuO nanomaterial two-phase simulation within a tube with ‎enhanced turbulator, Powder Technology, 373, 2020, 1-13. ‎
‎[16]‎ Sheikholeslami, E., Jafaryar, M., Abohamzeh, M., Shafee, A., Babazadeh, H., Energy and entropy evaluation and two-phase simulation of ‎nanoparticles within a solar unit with impose of new turbulator, Sustainable Energy Technologies and Assessments, 39, 2020, 100727.

‎[17]‎ Selimefendigil, F., Öztop, H.F., Pulsating nanofluids jet impingement cooling of a heated horizontal surface, International Journal of Heat and ‎Mass Transfer, 69, 2014, 54-65.‎
‎[18]‎ Selimefendigil,F., Öztop, H.F., Analysis and predictive modeling of nanofluid-jet impingement cooling of an isothermal surface under the ‎influence of a rotating cylinder, International Journal of Heat and Mass Transfer, 121, 2018, 233-245.‎
‎[19]‎ Izadi, A., Siavashi, M., Xiong, Q., Impingement jet hydrogen, air and CueH2O nanofluid cooling of a hot surface covered by porous media with ‎non-uniform input jet velocity, International Journal of Hydrogen Energy, 44, 2019, 15933-15948.‎
‎[20]‎ Lamraoui, H., Mansouri, K., Saci, R., Numerical investigation on fluid dynamic and thermal behavior of a non-Newtonian Al2O3–water ‎nanofluid flow in a confined impinging slot jet, Journal of Non-Newtonian Fluid Mechanics, 265, 2019, 11-27.‎
‎[21]‎ Manca, O., Ricci, D., Nardini, S., Lorenzo, G.D., Thermal and fluid dynamic behaviors of confined laminar impinging slot jets with nanofluids, ‎International Communications in Heat and Mass Transfer, 70, 2016, 15–26.‎
‎[22]‎ Amjadian, M., Safarzadeh, H., Bahiraei, M., Nazari, S., Jaberi, B., Heat transfer characteristics of impinging jet on a hot surface with constant ‎heat flux using Cu2O–water nanofluid: An experimental study, International Communications in Heat and Mass Transfer, 112, 2020, 104509.‎
‎[23]‎ Yousefi,T., Shojaeizadeh, E., Mirbagheri, H.R., Farahbaksh, B., Saghir, M.Z., An experimental investigation on the impingement of a planar jet ‎of Al2O3–water nanofluid on a V-shaped plate, Experimental Thermal and Fluid Science,50, 2013, 114-126.‎
‎[24]‎ Teamah,M.A., Dawood, M.M.K., Shehata, A., Numerical and experimental investigation of flow structure and behavior of nanofluids flow ‎impingement on horizontal flat plate, Experimental Thermal and Fluid Science, 74, 2016, 235-246.‎
‎[25]‎ Mahdavi, M., Sharifpur, M., Meyer, J.P., Chen, L., Thermal analysis of a nanofluid free jet impingement on a rotating disk using volume of fluid ‎in combination with discrete modelling, International Journal of Thermal Sciences, 158, 2020, 106532.‎
‎[26]‎ Sun, B., Qu, Y., Yang, D., Heat transfer of Single Impinging Jet with Cu Nanofluids, Applied Thermal Engineering, 102, 2016, 701-707.‎
‎[27]‎ Pratap, A., Kumar, Baghel, Y., Patel, V.K., Effect of impingement height on the enhancement of heat transfer with circular confined jet ‎impingement using nanofluids, Materials Today: Proceedings, 28, 2020, 1656-1661.‎
‎[28]‎ Abhijith, M.S., Venkatasubbaiah, K., Numerical investigation of jet impingement flows with different nanofluids in a mini channel using ‎Eulerian-Eulerian two-phase method, Thermal Science and Engineering Progress, 2020, 100585.‎
‎[29]‎ Abanti, D., Sonal, K., Pabitra, H., Heat Transfer and Thermal Characteristics Effects on Moving Plate Impinging from Cu-Water Nanofluid Jet, ‎Journal of Thermal Science, 29(1), 2020, 182-193.‎
‎[30]‎ Esbo, M.R., Ranjbar, A.A., Ramiar, A., Rahgoshay, M., Numerical simulation of forced convection of nanofluid in a confined jet, Heat & Mass ‎Transfer, 48, 2012, 1995-2005.‎
‎[31]‎ Siavashi, M., Jamali, M., Heat transfer and entropy generation analysis of turbulent flow of TiO2-water nanofluid inside annuli with different ‎radius ratios using two-phase mixture model, Applied Thermal Engineering, 100, 2016, 1149-1160.‎
‎[32]‎ Lafouraki, B.Y., Ramiar, A., Ranjbar, L.A., Numerical Investigation of Laminar Forced Convection and Entropy Generation of Nanofluid in a ‎Confined Impinging Slot Jet Using Two Phase Mixture Model, J. Sci. Technol. Trans. Mech. Eng., 43, 2019, 165-179.‎
‎[33]‎ Paulraj, M.P., Sahu, S.K., Conjugate heat transfer enhancement of laminar slot jets with various nanofluids on an array of protruding hot ‎sources using MPM approach, Numerical Heat Transfer, 76(4), 2019, 232-253.‎
‎[34]‎ Arquis, E., Rady, M.A., Nada, S.A., A numerical investigation and parametric study of cooling an array of multiple protruding heat sources by ‎a laminar slot air jet, International Journal of Heat and Fluid Flow, 28, 2007, 787-805.‎
‎[35]‎ Lam, P.A.K., Prakash, K.A., A numerical investigation of heat transfer and entropy generation during jet impingement cooling of protruding ‎heat sources without and with porous medium, Energy Conversion and Management, 89, 2015, 626-643.‎
‎[36]‎ Lam, P.A.K., Prakash, K.A., Thermodynamic investigation and multi-objective optimization for jet impingement cooling system with ‎Al2O3/water nanofluid, Energy Conversion and Management, 111, 2016, 38-56.‎
‎[37]‎ Boudraa, B., Bessaั—h, R., Three-dimensional turbulent forced convection around a hot cubic block exposed to across-flow and an impinging jet, ‎Heat Transfer, 2020, 1-19.‎
‎[38]‎ Nimmagadda, R., Haustein, H.D., Asirvatham, L.G., Wongwises, S., Effect of uniform/non-uniform magnetic field and jet impingement on the ‎hydrodynamic and heat transfer performance of nanofluids, Journal of Magnetism and Magnetic Materials, 479, 2019, 268-281.‎
‎[39]‎ Ghale, Z.Y., Haghshenasfard, M., Esfahany, M.N., Investigation of nanofluids heat transfer in a ribbed microchannel heat sink using single-‎phase and multiphase CFD models, International Communications in Heat and Mass Transfer, 68, 2015, 122-129.‎
‎[40]‎ Lafouraki, B.Y., Ramiar, A., Ranjbar, L.A., Numerical Simulation of Two Phase Turbulent Flow of Nanofluids in Confined Slot Impinging Jet, Flow ‎Turbulence Combust, 97, 2016, 571-589.‎
‎[41]‎ Shariat, M., Moghari, R.M., Akbarinia A., Rafee, R., Sajjadi S.M., Impact of nanoparticle mean diameter and the buoyancy force on laminar ‎mixed convection nanofluid flow in an elliptic duct employing two phase mixture model, International Communications in Heat and Mass Transfer, ‎‎50, 2014, 15-24.

‎[42]‎ Hejazian, M., Moraveji, M.K., Beheshti, A., Comparative study of Euler and mixture models for turbulent flow of Al2O3 nanofluid inside a ‎horizontal tube, International Communications in Heat and Mass Transfer, 52, 2014, 152-158.‎
‎[43]‎ Manninen, M., Taivassalo, V., Kallio, S., On the mixture model for multiphase flow, VTT Publications 288 Technical Research Centre of Finland, ‎‎1996. ‎
‎[44]‎ Schiller, L., Naumann, A., A drag coefficient correlation, Z. Ver. Dtsch Ing., 7, 1935, 318-320. ‎
‎[45]‎ Bazdar, H., Toghraie, D., Pourfattah, F., Akbari, O.A., Nguyen H.M., Asadi, A., Numerical investigation of turbulent flow and heat transfer of ‎nanofluid inside a wavy microchannel with different wavelengths, Journal of Thermal Analysis and Calorimetry, 139, 2020, 2365-2380.‎
‎[46]‎ Esmaeili, H., Armaghani, T., Abedini, A., Pop, I., Turbulent combined forced and natural convection of nanofluid in a 3D rectangular channel ‎using two-phase model approach, Journal of Thermal Analysis and Calorimetry, 135, 2019, 3247-3257.‎
‎[47]‎ Shahsavar, A., Rashidi, M., Mosghani, M.M., Toghraie, D., ·Talebizadehsardari, P., A numerical investigation on the influence of nano additive ‎shape on the natural convection and entropy generation inside a rectangle shaped finned concentric annulus filled with boehmite alumina ‎nanofluid using two phase mixture model, Journal of Thermal Analysis and Calorimetry, 141, 2020, 915-930.‎
‎[48]‎ Alsabery, A.I., Ismael, M.A., Chamkha, A.J., Hashim, I., Effects of two-phase nanofluid model on MHD mixed convection in a lid-driven cavity ‎in the presence of conductive inner block and corner heater, Journal of Thermal Analysis and Calorimetry, 135, 2019, 729-750.‎
‎[49]‎ Ghale, Z.Y., Haghshenasfard, M., Esfahany, M.N., Investigation of nanofluids heat transfer in a ribbed microchannel heat sink using single-‎phase and multiphase CFD models, International Communications in Heat and Mass Transfer, 68, 2015, 122-129.‎
‎[50]‎ Rajabi, A.H., Toghraie, D., Mehmandoust, B., Numerical simulation of turbulent nanofluid flow in the narrow channel with a heated wall and a ‎spherical dimple placed on it by using of single phase and mixture- phase models, International Communications in Heat and Mass Transfer, 108, ‎‎2019, 104316.‎
‎[51]‎ Li, Z., Shahsavarc, A., Niazi, K., Al-Rashed, A.A.A.A., Rostami, S. Numerical assessment on the hydrothermal behavior and irreversibility of ‎MgO-Ag/water hybrid nanofluid flow through a sinusoidal hairpin heatexchanger, International Communications in Heat and Mass Transfer, 115, ‎‎2020, 104628.‎
‎[52]‎ Ansys Inc, Fluent User Guide and Fluent Theory Guide, version 14.5.‎
‎[53]‎ navi, S.A., Ramiar, A., Ranjbar, A.A., Turbulent forced convection of nanofluid in a wavy channel using two phase model, Heat & Mass Transfer, ‎‎50, 2014, 661-671.‎
‎[54]‎ Mukherjee, A., Rout, S., Barik, A.K., Heat transfer and entropy generation analysis of a protruded surface in presence of a cross-flow jet using ‎Al2O3-water nanofluid, Thermal Science and Engineering Progress, 5, 2018, 327-338.‎