Combined Impacts of Fin Surface Inclination and ‎Magnetohydrodynamics on the Thermal Performance of a Convective-Radiative Porous Fin‎

Document Type : Research Paper


Department of Mechanical Engineering, University of Lagos, Nigeria


In this work, the combined impacts of magnetohydrodynamics and fin surface inclination on thermal performance of convective-radiative porous fin with temperature-invariant thermal conductivity is numerically study using finite difference method. Parametric studies reveal that as the inclination of fin, convective, radiative, magnetic and porous parameters increase, the adimensional fin temperature decreases which leads to an increase in the heat transfer rate through the fin and the thermal efficiency of the porous fin. It is established thatthe porous fin is more efficient and effective for low values of convective, inclination angle, radiative, magnetic and porous parameters. The thermal performance ratio of the fin increases with the porosity parameter. 


Main Subjects

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

‎[1] Kiwan, S., Al-Nimr, M. A., Using Porous Fins for Heat Transfer Enhancement, Journal of Heat Transfer, 123, 2000, 790-795.‎
‎[2] Gong, L., Li, Y., Bai, Z., Xu, M., Thermal performance of micro-channel heat sink with metallic porous/solid compound fin ‎design, Applied Thermal Engineering, 137, 2018, 288-295.‎
‎[3] Ali, H. M., Ashraf, M. J., Giovannelli, A., Irfan, M., Irshad, T. B., Hamid, H. M. et al., Thermal management of electronics: An ‎experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs, International Journal of Heat and Mass Transfer, 123, 2018, 272-284.‎
‎[4] Saedodin, M. O. S., Olank, M., Temperature distribution in porous fins in natural convection condition, Journal of American Science, 7, 2011, 476.‎
‎[5] Oguntala, G. A., Abd-Alhameed, R. A., Sobamowo, M. G., Eya, N. Effects of particles deposition on thermal performance of a ‎convective-radiative heat sink porous fin of an electronic component, Thermal Science and Engineering Progress, 6, 2018, 177-185.‎
‎[6] Sobamowo, M. G., Kamiyo, O. M., Adeleye, O. A., Thermal performance analysis of a natural convection porous fin with ‎temperature-dependent thermal conductivity and internal heat generation, Thermal Science and Engineering Progress, 1, 2017, 39-52.‎
‎[7] Mosayebidorcheh, S., Farzinpoor, M., Ganji, D. D., Transient thermal analysis of longitudinal fins with internal heat generation ‎considering temperature-dependent properties and different fin profiles, Energy Conversion and Management, 86, 2014, 365-370.‎
‎[8] Kim, S. M., Mudawar, I., Analytical heat diffusion models for different micro-channel heat sink cross-sectional geometries, ‎International Journal of Heat and Mass Transfer, 53, 2010, 4002-4016.‎
‎[9] Moradi, A., Hayat, T., Alsaedi, A., Convection-radiation thermal analysis of triangular porous fins with temperature-dependent ‎thermal conductivity by DTM, Energy Conversion and Management, 77, 2014, 70-77.‎
‎[10] Oguntala, G. A., Abd-Alhameed, R. A., Sobamowo, M. G. On the effect of magnetic field on thermal performance of convective-‎radiative fin with temperature-dependent thermal conductivity, Karbala International Journal of Modern Science, 4, 2018, 1-11.‎
‎[11] Wan, Z. M., Guo, G. Q., Su, K. L., Tu, Z. K., Liu, W., Experimental analysis of flow and heat transfer in a miniature porous ‎heat sink for high heat flux application, International Journal of Heat and Mass Transfer, 55, 2012, 4437-4441.‎
‎[12] Naphon, P., Klangchart, S., Wongwises, S., Numerical investigation on the heat transfer and flow in the mini-fin heat sink for ‎CPU, International Communications in Heat and Mass Transfer, 36, 2009, 834-840.‎
‎[13] Oguntala, G. A., Abd-Alhameed, R. A., Sobamowo, M. G., Danjuma, I., Performance, Thermal Stability and Optimum Design ‎Analyses of Rectangular Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation, Journal of Computational Applied Mechanics, 49, 2018, 37-43.‎
‎[14] Sobamowo, M. G., Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation using ‎Galerkin's method of weighted residual, Applied Thermal Engineering, 99, 2016, 1316-1330.‎
‎[15] Seyf, H. R., Feizbakhshi, M., Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-‎fin heat sinks, International Journal of Thermal Sciences, 58, 2012, 168-179.‎
‎[16] Fazeli, S. A., Hashemi, S. M. H., Zirakzadeh, H., Ashjaee, M., Experimental and numerical investigation of heat transfer in a ‎miniature heat sink utilizing silica nanofluid, Superlattices and Microstructures, 51, 2012, 247-264.‎
‎[17] Oguntala, G. A., Sobamowo, G. M., Yinusa, A. A., Abd-Alhameed, R., Application of Approximate Analytical Technique Using the ‎Homotopy Perturbation Method to Study the Inclination Effect on the Thermal Behavior of Porous Fin Heat Sink, Mathematical and Computational Applications, 23, 2018, 62.‎
‎[18] Oguntala, G. A., Abd-Alhameed, R. A., Haar Wavelet Collocation Method for Thermal Analysis of Porous Fin with Temperature-‎dependent Thermal Conductivity and Internal Heat Generation, Journal of Applied and Computational Mechanics, 3, 2017, 185-191.‎
[19] Sobamowo, M. G., Alaribe, K. C., Adeleye, O. A., Yinusa, A. A., Adedibu, O. A., A Study on the Impact of Lorentz Force on the Thermal Behaviour of a Convective-Radiative Porous Fin using Differential Transformation Method, International Journal of Mechanical Dynamics & Analysis, 6(+1), 2020, 45-59.
[20] Gireesha. B. J., Sowmya, G., Heat Transfer Analysis of an Inclined Porous Fin using Differential Transform Method Journal, International Journal of Ambient Energy, 2020, Article in Press.
[21]Jasim, H. H., Söylemez, M. S., The Effects of the Perforation Shapes, Sizes, Numbers and Inclination Angles on The Thermal Performance of a Perforated Pin Fin, Turkish Journal of Science & Technology, 13(2), 2018, 1-13.
[22] Jasim, H. H., Söylemez, M. S., Optimization of a rectangular pin fin using rectangular perforations with different inclination angles, 35(4), 2017, 969-977.
[23] Oguntala, G. A., Sobamowo, G. M., Abd-Alhameed, R., Noras, J., Numerical Investigation of Inclination on the Thermal Performance of Porous Fin Heatsink using Pseudospectral Collocation Method, Karbala International Journal of Modern Science, 5(1), 2009, 19-26.
[24] Amirkolaei, S. R., Ganji, D. D., Salarian, H., Determination of temperature distribution for porous fin which is exposed to Uniform Magnetic Field to a vertical isothermal surface by Homotopy Analysis Method and Collocation Method, Indian J. Sci. Res., 1(2), 2014, 215-222.
[25] Sheikholeslami, M., Jafaryar, M., Shafee, A., Babazadeh, H., Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin, Journal of Cleaner Production, 261(10), 2020, 121206.
[26] Sheikholeslamia, M., Farshad, S. A., Shafee, A., Babazadeh, H., Performance of solar collector with turbulator involving nanomaterial turbulent regime, Renewable Energy, 163, 2021, 1222-1237
[27] Sheikholeslami, M., Jafaryar, M., Said, Z., Alsabery, A. I., Babazadeh, H., Shafee, A., Modification for helical turbulator to augment heat transfer behavior of nanomaterial via numerical approach, Applied Thermal Engineering, 182(5), 2021, 115935.
[28] van Erp, R., Soleimanzadeh, R., Nela, L. et al., Co-designing electronics with microfluidics for more sustainable cooling, Nature, 585, 2020,211–216.
[29] Varnava, C., Chips cool off with integrated microfluidics, Nature Electronics, 3, 2020, 583.