New Exact Traveling Wave Solutions for Fractional Order System ‎Describing the Second Grade Fluid through Medium with Heat ‎Transfer‎

Document Type : Research Paper


1 NED University Engineering & Technology, Karachi-75270, Pakistan‎

2 Department of Science & Technology, Indus University Karachi-75270, Pakistan‎

3 Institute of Business Management, Karachi-75270, Pakistan‎


The aim of this paper is to determine the time-dependent MHD fractionalized three-dimensional flow of viscoelastic fluid in porous medium with heat transfer by traveling wave solution. The governing nonlinear partial differential equations are altered by utilizing the wave parameter ξ = lx + my + nz + ωtβ/Γ(β+1) into ordinary differential equations. The exact solutions are attained by applying a traveling wave method for two different cases. Here we discuss some precise cases, the solution of MHD Newtonian fluid in porosity can be obtained by substituting α1 → 0 in general solution. The impact of important governing parameters on the movement of a fluid is examined as well as the comparison of Newtonian and non-viscous fluids have been made by 2D and 3D graphical analysis.


Main Subjects

[1] Hayat, T., Khan, M. I., Alsaedi, A., Khan, M. I., Joule heating and viscous dissipation in flow of nanomaterial by a rotating disk, Int. Commun. Heat Mass Transf., 89, 2017, 190–197.
[2] Hayat, T., Ahmad, S., Khan, M. I., Alsaedi, A., Modeling and analyzing flow of third grade nanofluid due to rotating stretchable disk with chemical reaction and heat source, Phys. B Condens. Matter, 537, 2018, 116–126.
[3] Qayyum, S., Khan, M. I., Hayat, T., Alsaedi, A., Tamoor, M., Entropy generation in dissipative flow of Williamson fluid between two rotating disks, Int. J. Heat Mass Transf., 127, 2018, 933–942.
[4] Hayat, T., Khan, M. I., Farooq, M., Alsaedi, A.,  Waqas, M., Yasmeen, T.,  Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface, Int. J. Heat Mass Transf., 99, 2016, 702–710.
[5] Coleman, B. D., Noll, W., An approximation theorem for functionals, with applications in continuum mechanics, The foundations of mechanics and thermodynamics. Berlin, Heidelberg: Springer, 1974 97-112.
[6] Abbas, S. Z., Khan, W. A., Sun, H., Irfan, M., Khan, M. I., Waqas, M., Von Karman swirling analysis for modeling Oldroyd-B nanofluid considering cubic autocatalysis, Phys. Scr., 95, 2020, 1-10.
[7] Gao, W., Veeresha, P., Prakasha, D. G., Baskonus, H. M., Novel dynamic structures of 2019-ncov with nonlocal operator via powerful computational technique, Biology-Basel, 9, 2020, 1-14.
[8] Ghadikolaei, S. S., Hosseinzadeh, K., Yassari, M., Sadeghi, H., Ganji, D. D., Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet, Therm. Sci. Eng. Prog., 5, 2018, 309–316.
[9] Hayat, T., Khan, M. W. A., Alsaedi, A., Khan, M. I., Squeezing flow of second grade liquid subject to non-Fourier heat flux and heat generation/absorption, Colloid Polym. Sci., 295, 2017, 967–975.
[10] Danish, G. A., Imran, M., Sadiq, N., Sadiq, N., Iram, M., Tahir, M., Caputo-Fabrizio Fractionalized second grade fluid in a circular cylinder with uniform magnetic field, Punjab Univ. J. Math., 51, 2019,1–11.
[11] Raza, N., Abdullah, M., Butt, A. R., Awan, A. U., Haque, E. U., Flow of a second grade fluid with fractional derivatives due to a quadratic time dependent shear stress, Alexandria Eng. J., 57, 2018, 1963–1969.
[12] Jamil, M., Khan, N. A., Rauf, A., Oscillating flows of fractionalized second grade fluid, ISRN Math. Phys., 2012, 1–23.
[13] Sene, N., Integral balance methods for stokes first equation described by the left generalized fractional derivative, Physics, 1, 2019, 154–166.
[14] Khan, M. I., Waqas, M., Hayat, T., Alsaedi, A., A comparative study of Casson fluid with homogeneous heterogeneous reactions, J. Colloid Interface Sci., 498, 2017, 85–90.
[15] Shen, M., Wu, Y., Chen, H., Unsteady free convection of second-grade nanofluid with a new time-space fractional heat conduction, Heat Transf. - Asian Res., 2019, 1-17.
[16] Ghadikolaei, S. S., Yassari, M., Sadeghi, H., Hosseinzadeh, K., Ganji, D. D., Analytical solution of viscoelastic non-Newtonian Second-grade fluid flow on a stretching sheet, Therm. Sci. Eng. Prog., 5, 2017, 1–35.
[17] Khan, A., Zaman, G., Unsteady Magnetohydrodynamic flow of second grade fluid due to uniform accelerating plate, J. Appl. Fluid Mech., 9, 2016, 3127–3133.
[18] Chen, S., Liu, Y., Wei, L., Guan, B., Exact solutions to fractional drinfel’d-sokolov-wilson equation, Chinese J. Phys., 56(2),   2018, 708-720.
[19] Shah, R. A., Rehman, S., Idrees, M., Ullah, M, Abbas, T., Similarity analysis of MHD flow field and heat transfer of a second grade convection flow over an unsteady stretching sheet, Bound. Value Probl., 162, 2017, 1–20.
[20] Mahmood, K., Noveel, M., Muhammad, S., Nasir, S., Heat transfer in stagnation-point flow of a Jeffrey fluid past a lubricated surface, J. Brazilian Soc. Mech. Sci. Eng., 41, 2019, 1–9.
[21] Yang, L., Chen, S., Wei, L., Guan, B., Exact solutions to complex Ginzburg-Landau equation, Pramana- J. Phys., 91 (29), 2018, 1-10.  
[22] Yang, L., Chen, S., Guan, B., Xu, P., Layout optimization of large-scale oil-gas gathering system based on combined optimization strategy, Neucom., 332(7), 2019, 159-183.
[23] Guan, B., Chen, S., Yang, L., Wang, X., Zhao, J., Wave patterns of (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chains in the semiclassical limit, Results Phys., 16, 2014, 102834.
[24] Kai, Y., Zheng, B., Yang, N., Xu, W., Exact single traveling wave solutions to generalized (2+1)-dimensional Gardner equation with variable coefficients, Results Phys., 15, 2019, 102527.
[25] Tassaddiq, A., MHD flow of a fractional second grade fluid over an inclined heated plate, Chaos, Solitons and Fractals, 123, 2019, 341–346.
[26] Khan, M. I., Tamoor, M., Hayat, T., Alsaedi, A., MHD boundary layer thermal slip flow by nonlinearly stretching cylinder with suction/blowing and radiation, Results Phys., 7, 2017, 1207–1211.
[27] Zafar, A. A., Vieru, D., Akhtar, S., Magnetohydrodynamics of rotating fractional second grade fluid in porous medium, J. Prime Res. Math., 10, 2015, 45–58.
[28] Aurangzaib, Sharif Uddin, M., Bhattacharyya, K., Shafie, S., Micropolar fluid ow and heat transfer over an exponentially permeable shrinking sheet, Propuls. Power Res., 5, 2016, 310-317.
[29] Imran, M. A., Khan, I., Ahmad, M., Shah, N. A., Nazar, M., Heat and mass transport of differential type fluid with non-integer order time-fractional Caputo derivatives, J. Mol. Liq., 229, 2017, 67–75.
[30] N. Sadiq, M. A. Imran, R. Safdar, S. Sarwar, Analytic and semi analytic solution for motion of fractional second grade fluid in a circular cylinder, J. Math. Anal., 9, 2018, 28–47.
[31] Gao, W., Veeresha, P., Prakasha, D. G., Baskonus, H. M., Yel, G., New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function, Chaos, Solitons and Fractals, 134, 2020, 109696.
[32] Veeresha, P., Baskonus, H. M., Prakasha, D. G., Gao, W., Yel, G., Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena, Chaos, Solitons and Fractals, 133, 2020, 109661.
[33] Veeresha, P., Prakasha, D. G., Solution for fractional generalized Zakharov equations with Mittag-Leffler function, Results Eng., 5, 2020, 100085.
[34] Bageley, R. L., Torvik, P. J., A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27, 1983, 201-210.
[35] Sheikh, N. A., Ali, F., Khan, I., Saqib, M., A modern approach of Caputo-Fabrizio time fractional derivative to MHD free convection flow of generalized second-grade fluid in a porous medium, Neural. Comput. Appl., 2016, 1-11.
[36] Caputo, M., A Elasticitae Dissipazione, Zanichelli, Bologna, (1965).
[37] Raza, N., Unsteady rotational flow of a second grade fluid with non-integer caputo time fractional derivative, J. Math., 49, 2017, 1–11.
[38] Asjad, M. I., Shah, N. A., Aleem, M., Khan, I., Heat transfer analysis of fractional second-grade fluid subject to Newtonian heating with Caputo and Caputo-Fabrizio fractional derivatives: A comparison, Eur. Phys. J. Plus, 132, 2017, 1–19.
[39] Khater, M. M., Zahran, E. H., Shehata, M. S., Solitary wave solution of the generalized Hiro-tasatsuma coupled KdV system, J. Egyptain Math. Soc., 25, 2017, 8-12.
[40] Khan, K., Akbar, M.A., Exact and solitary wave solutions for the Tzitzeica-Dodd-Bullough and the ‎modified KdV Zakharov-Kuznetsov equations using the modified simple equation method, Ain Shams Eng. J., 4, 2013, 903-909.
[41] Bruzn, M. S., Gandarias, M. L., Traveling wave solutions of the K(m,n) equation with generalized evolution, Math. Methods Appl. Sci., 41, 2018, 5851-5857.
[42] Kaplan, M., Bekir, A., Construction of exact solutions to the Spacectime fractional differential equations via new approach, Optik, 132, 2017, 1-8.
[43] Li, J., Dai, H., On the Study of Singular Nonlinear Traveling Wave Equations: Dynamical System Approach, Science Press, Beijing, 2007.
[44] Ellahi, R., Mohyud-Din, S. T., Khan, U., Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method, Results Phys., 8, 2018, 114-120.
[45] Feng, L. B., Zhuang, P., Liu, F., Turner, I., Gu, Y. T., Finite element method for space-time fractional diffusion equation, Numer. Algorithm, 72, 2016, 749-767.
[46] Mohamed, M. S., Gepreel, K. A., Reduced differential transform method for nonlinear integral member of Kadomtsev - Petviashvili hierarchy differential equations, J. Egypt. Math. Soc., 25, 2017, 1-7.
[47] Ahmad, J., Mohyud-Din, S. T., Solving fractional vibrational problem using restarted fractional Adomian’s decomposition method, Life Sci. J., 10, 2016, 210-216.
[48] Ravi, L., Ray, S. S., Sahoo, S., New exact solutions of coupled Boussinesq-Burgers equations by exp function method, J. Ocean Eng. Sci., 2, 2017, 34-46.
[49] Islam, T., Akbar, M. A., Kalam, A., Traveling wave solutions to some nonlinear fractional partial differential equations through the rational (G/G) -expansion method, J. Ocean Eng. Sci., 3, 2018, 76–81.
[50] Zhao, Y., Chen, L., Zhang, X. R., Traveling wave solutions to incompressible unsteady 2D laminar flow with heat transfer boundary, Int. Commun., Heat Mass Transfer, 75, 2016, 206-217.
[51] Khan, N. A., Ara, A., Jamil, M., Yildirim, A., Traveling wave solutions for MHD Aligned flow of a second grade fluid, A symmetry independent approach, J. King. Saud. Uni. Sci., 24, 2011, 63-67.
[52] Jamil, M., Khan, N.A., Mahmood, A., Din, Q., Some exact solutions for the flow of a Newtonian ‎fluid with heat transfer via prescribed vorticity, J. Prime Res. Math., 6, 2010, 38-55.‎
[53] Jamil, M., Ahmed, A., New traveling wave solutions of MHD micropolar fluid in porous medium, J. Egyptian Math. Soc., 28(23), 2020, 1-22.
[54] Jamil, M., Ahmed, A., Khan, N. A., Some exact traveling wave solutions of MHD Maxwell fluid in Porous medium, Int. J. Appl. Comput. Math., 6, 2020, 1-18.
[55] Bhattacharyya, K., Hayat, T., Alsaedi, A., Exact solution for boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet, Z. Angew. Math. Mech., 94(6), 2014, 522-528.
[56] Sajid, M., Ahmed, I., Hayat, T., Ayub, M., Unsteady flow and heat transfer of a second grade fluid over a stretching sheet, Commun. Nonlinear Sci. Numer. Simul., 14, 2009, 96–108.
[57] Khan, N. S., Islam, S., Gul, T., Khan, I., Khan, W., Ali, L., Thin film flow of a second grade fluid in a porous medium past  a stretching sheet with heat transfer, Alexandria Eng. J., 57, 2018, 1019–1031.
[58] Khan, N. A., Naz, F., Khan, N. A., Ullah, S., MHD nonaligned stagnation point flow of second grade fluid towards a porous rotating disk, Nonlinear Eng., 8, 2019, 231–249.