Moving Least Squares Method and its Improvement: A Concise Review

Document Type : Review Paper

Authors

1 Department of Mechanical Engineering, Faculty of Engineering, UCSI University, Kuala Lumpur, Malaysia

2 Takasago i-Kohza, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia

3 School of Engineering and ICT, University of Tasmania, Churchill Ave, Hobart TAS, Australia

Abstract

The concise review systematically summarises the state-of-the-art variants of Moving Least Squares (MLS) method. MLS method is a mathematical tool which could render cogent support in data interpolation, shape construction and formulation of meshfree schemes, particularly due to its flexibility to form complex arithmetic equation. However, the conventional MLS method is suffering to deal with discontinuity of field variables. Varied strategies of overcoming such shortfall are discussed in current work. Although numerous MLS variants were proposed since the introduction of MLS method in numerical/statistical analysis, there is no technical review made on how the methods evolve. The current review is structured according to major strategies on how to improvise MLS method: the modification of weight function, the manipulation of discrete norms, the inclusion of iterative feature for residuals minimising and integration of these strategies for more robust computation. A wide range of advanced MLS variants have been compiled, summarised, and reappraised according to its underlying principle of improvement. In addition, inherent limitation of MLS method and its possible strategy of improvement is discussed too in this article. The current work could render valuable reference to implement and develop advanced MLS schemes, whenever complexity of the specific scientific problems arose.

Keywords

Main Subjects

[1]      Shepard, D., A Two-Dimensional Interpolation Function for Irregularly Spaced Data, Proceedings of the 1968 23rd ACM National Conference, ACM Press, New York, New York, USA, 1968: pp. 517–524. https://doi.org/10.1145/800186.810616.
[2]      Lancaster, P., Salkauskas, K., Surfaces Generated by Moving Least Squares Methods, Mathematics of Computation, 37, 1981, 141–158. https://doi.org/10.1090/S0025-5718-1981-0616367-1.
[3]      Shen, C., O’Brien, J.F., Shewchuk, J.R., Interpolating and Approximating Implicit Surfaces from Polygon Soup, Proceeding of 23rd ACM National Conference, ACM Press, New York, USA, 2004: pp. 896–904. https://doi.org/10.1145/1186562.1015816.
[4]      Cao, F., Li, M., Spherical Data Fitting by Multiscale Moving Least Squares, Applied Mathematical Modelling, 39, 2015, 3448–3458. https://doi.org/10.1016/j.apm.2014.11.047.
[5]      Zhang, H., Guo, C., Su, X., Zhu, C., Measurement Data Fitting Based on Moving Least Squares Method, Mathematical Problems in Engineering, 2015, Article ID 195023. https://doi.org/10.1155/2015/195023.
[6]      Lee, Y.J., Yoon, J., Image Zooming Method Using Edge-Directed Moving Least Squares Interpolation Based on Exponential Polynomials, Applied Mathematics and Computation, 269, 2015, 569–583. https://doi.org/10.1016/j.amc.2015.07.086.
[7]      Hwang, Y., Lee, J.-Y., Kweon, I.S., Kim, S.J., Probabilistic Moving Least Squares with Spatial Constraints for Nonlinear Color Transfer between Images, Computer Vision and Image Understanding, 180, 2019, 1–20. https://doi.org/10.1016/j.cviu.2018.11.001.
[8]      Breitkopf, P., Naceur, H., Rassineux, A., Villon, P., Moving Least Squares Response Surface Approximation: Formulation and Metal Forming Applications, Computers & Structures, 83, 2005, 1411–1428. https://doi.org/10.1016/j.compstruc.2004.07.011.
[9]      Gois, J.P., Nakano, A., Nonato, L.G., Buscaglia, G.C., Front Tracking with Moving-Least-Squares Surfaces, Journal of Computational Physics, 227, 2008, 9643–9669. https://doi.org/10.1016/j.jcp.2008.07.013.
[10]    Gilkeson, C.A., Toropov, V.V., Thompson, H.M., Wilson, M.C.T., Foxley, N.A., Gaskell, P.H., Multi-Objective Aerodynamic Shape Optimization of Small Livestock Trailers, Engineering Optimization, 45, 2013, 1309–1330. https://doi.org/10.1080/0305215X.2012.737782.
[11]    Ingarao, G., di Lorenzo, R., A Contribution on the Optimization Strategies Based on Moving Least Squares Approximation for Sheet Metal Forming Design, The International Journal of Advanced Manufacturing Technology, 64, 2013, 411–425. https://doi.org/10.1007/s00170-012-4020-8.
[12]    Amirfakhrian, M., Mafikandi, H., Approximation of Parametric Curves by Moving Least Squares Method, Applied Mathematics and Computation, 283, 2016, 290–298. https://doi.org/10.1016/j.amc.2016.02.039.
[13]    Nayroles, B., Touzot, G., Villon, P., Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements, Computational Mechanics, 10, 1992, 307–318. https://doi.org/10.1007/BF00364252.
[14]    Belytschko, T., Lu, Y.Y., Gu, L., Element-Free Galerkin Methods, International Journal for Numerical Methods in Engineering, 37, 1994, 229–256. https://doi.org/10.1002/nme.1620370205.
[15]    Chehel Amirani, M., Khalili, S.M.R., Nemati, N., Free Vibration Analysis of Sandwich Beam with FG Core Using the Element Free Galerkin Method, Composite Structures, 90, 2009, 373–379. https://doi.org/10.1016/j.compstruct.2009.03.023.
[16]    Atluri, S.N., Cho, J.Y., Kim, H.-G., Analysis of Thin Beams, Using the Meshless Local Petrov-Galerkin Method, with Generalized Moving Least Squares Interpolations, Computational Mechanics, 24, 1999, 334–347. https://doi.org/10.1007/s004660050456.
[17]    Atluri, S.N., Kim, H.-G., Cho, J.Y., A Critical Assessment of the Truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) Methods, Computational Mechanics, 24, 1999, 348–372. https://doi.org/10.1007/s004660050457.
[18]    Liu, W.K., Jun, S., Zhang, Y.F., Reproducing Kernel Particle Methods, International Journal for Numerical Methods in Fluids, 20, 1995, 1081–1106. https://doi.org/10.1002/fld.1650200824.
[19]    Salehi, R., Dehghan, M., A Generalized Moving Least Square Reproducing Kernel Method, Journal of Computational and Applied Mathematics, 249, 2013, 120–132. https://doi.org/10.1016/j.cam.2013.02.005.
[20]    Lucy, L.B., A Numerical Approach to the Testing of the Fission Hypothesis, The Astronomical Journal, 82, 1977, 1013–1024. https://doi.org/10.1086/112164.
[21]    Avesani, D., Dumbser, M., Bellin, A., A New Class of Moving-Least-Squares WENO–SPH Schemes, Journal of Computational Physics, 270, 2014, 278–299. https://doi.org/10.1016/j.jcp.2014.03.041.
[22]    Ghoneim, A.Y., A Smoothed Particle Hydrodynamics-Phase Field Method with Radial Basis Functions and Moving Least Squares for Meshfree Simulation of Dendritic Solidification, Applied Mathematical Modelling, 77, 2020, 1704–1741. https://doi.org/10.1016/j.apm.2019.09.017.
[23]    Peskin, C.S., The Immersed Boundary Method, Acta Numerica, 11, 2002, 479–517. https://doi.org/10.1017/S0962492902000077.
[24]    Spandan, V., Lohse, D., de Tullio, M.D., Verzicco, R., A Fast Moving Least Squares Approximation with Adaptive Lagrangian Mesh Refinement for Large Scale Immersed Boundary Simulations, Journal of Computational Physics, 375, 2018, 228–239. https://doi.org/10.1016/j.jcp.2018.08.040.
[25]    Mostafaiyan, M., Wießner, S., Heinrich, G., Moving Least-Squares Aided Finite Element Method (MLS-FEM): A Powerful Means to Predict Pressure Discontinuities of Multi-Phase Flow Fields and Reduce Spurious Currents, Computers & Fluids, 211, 2020,. https://doi.org/10.1016/j.compfluid.2020.104669.
[26]    Arroyo, M., Ortiz, M., Local Maximum-Entropy Approximation Schemes: A Seamless Bridge between Finite Elements and Meshfree Methods, International Journal for Numerical Methods in Engineering, 65, 2006, 2167–2202. https://doi.org/10.1002/nme.1534.
[27]    Abdollahi, A., Domingo, N., Arias, I., Catalan, G., Converse Flexoelectricity Yields Large Piezoresponse Force Microscopy Signals in Non-Piezoelectric Materials, Nature Communications, 10, 2019, 1266. https://doi.org/10.1038/s41467-019-09266-y.
[28]    Amirfakhrian, M., Mafikandi, H., Approximation of Parametric Curves by Moving Least Squares Method, Applied Mathematics and Computation, 283, 2016, 290–298. https://doi.org/10.1016/j.amc.2016.02.039.
[29]    Fleishman, S., Cohen-Or, D., Silva, C.T., Robust Moving Least-Squares Fitting with Sharp Features, ACM Transactions on Graphics, 24, 2005, 544–552. https://doi.org/10.1145/1073204.1073227.
[30]    Li, J., Wang, H., Kim, N.H., Doubly Weighted Moving Least Squares and Its Application to Structural Reliability Analysis, Structural and Multidisciplinary Optimization, 46, 2012, 62–82. https://doi.org/10.1007/s00158-011-0748-2.
[31]    Breitkopf, P., Rassineux, A., Villon, P., An Introduction to Moving Least Squares Meshfree Methods, Revue Européenne Des Éléments Finis, 11, 2002, 825–867. https://doi.org/10.3166/reef.11.825-867.
[32]    Liu, G.R., Gu, Y.T., An Introduction to Meshfree Methods and Their Programming, Springer-Verlag, Berlin/Heidelberg, 2005. https://doi.org/10.1007/1-4020-3468-7.
[33]    Wang, B., Moving Least Squares Method for a One-Dimensional Parabolic Inverse Problem, Abstract and Applied Analysis, 2014, 2014, Article ID 686020. https://doi.org/10.1155/2014/686020.
[34]    Zhang, H., Guo, C., Su, X., Zhu, C., Measurement Data Fitting Based on Moving Least Squares Method, Mathematical Problems in Engineering, 2015, 2015, Article ID 195023. https://doi.org/10.1155/2015/195023.
[35]    Schaefer, S., McPhail, T., Warren, J., Image deformation using moving least squares, Proceeding of International Conference on Computer Graphics and Interactive Tech-Niques, ACM Press, New York, New York, USA, 2006. https://doi.org/10.1145/1179352.1141920.
[36]    Ehsan, A.F., Tey, W.Y., Investigation of Shape Parameter for Exponential Weight Function in Moving Least Squares Method, Progress in Energy and Environment, 2, 2017, 13–22.
[37]    Kang, S.-C., Koh, H.-M., Choo, J.F., An Efficient Response Surface Method Using Moving Least Squares Approximation for Structural Reliability Analysis, Probabilistic Engineering Mechanics, 25, 2010, 365–371. https://doi.org/10.1016/j.probengmech.2010.04.002.
[38]    Taflanidis, A.A., Stochastic Subset Optimization Incorporating Moving Least Squares Response Surface Methodologies for Stochastic Sampling, Advances in Engineering Software, 44, 2012, 3–14. https://doi.org/10.1016/j.advengsoft.2011.07.009.
[39]    Levin, D., The Approximation Power of Moving Least-Squares, Mathematics of Computation, 67, 1998, 1517–1532. https://doi.org/10.1090/S0025-5718-98-00974-0.
[40]    Fasshauer, G.E., Toward Approximate Moving Least Squares Approximation with Irregularly Spaced Centers, Computer Methods in Applied Mechanics and Engineering, 193, 2004, 1231–1243. https://doi.org/10.1016/j.cma.2003.12.017.
[41]    Armentano, M.G., Durán, R.G., Error Estimates for Moving Least Square Approximations, Applied Numerical Mathematics, 37, 2001, 397–416. https://doi.org/10.1016/S0168-9274(00)00054-4.
[42]    Most, T., Bucher, C., New Concepts for Moving Least Squares: An Interpolating Non-Singular Weighting Function and Weighted Nodal Least Squares, Engineering Analysis with Boundary Elements, 32, 2008, 461–47010. https://doi.org/10.1016/j.enganabound.2007.10.013.
[43]    Zuppa, C., Good Quality Point Sets and Error Estimates for Moving Least Square Approximations, Applied Numerical Mathematics, 47, 2003, 575–585. https://doi.org/10.1016/S0168-9274(03)00091-6.
[44]    Zheng, S., Feng, R., Huang, A., A Modified Moving Least-Squares Suitable for Scattered Data Fitting with Outliers, Journal of Computational and Applied Mathematics, 370, 2020, Article ID 112655. https://doi.org/10.1016/j.cam.2019.112655.
[45]    Lei, Z., Tianqi, G., Ji, Z., Shijun, J., Qingzhou, S., Ming, H., An Adaptive Moving Total Least Squares Method for Curve Fitting, Measurement, 49, 2014, 107–112. https://doi.org/10.1016/j.measurement.2013.11.050.
[46]    Joldes, G.R., Chowdhury, H.A., Wittek, A., Doyle, B., Miller, K., Modified Moving Least Squares with Polynomial Bases for Scattered Data Approximation, Applied Mathematics and Computation, 266, 2015, 893–902. https://doi.org/10.1016/j.amc.2015.05.150.
[47]    Matinfar, M., Pourabd, M., Modified Moving Least Squares Method for Two-Dimensional Linear and Nonlinear Systems of Integral Equations, Computational and Applied Mathematics, 37, 2018, 5857–5875. https://doi.org/10.1007/s40314-018-0667-6.
[48]    Wang, Q., Zhou, W., Cheng, Y., Ma, G., Chang, X., Miao, Y., Chen, E., Regularized Moving Least-Square Method and Regularized Improved Interpolating Moving Least-Square Method with Nonsingular Moment Matrices, Applied Mathematics and Computation, 325, 2018, 120–145. https://doi.org/10.1016/j.amc.2017.12.017.
[49]    Levin, D., Between Moving Least-Squares and Moving Least-ℓ1, BIT Numerical Mathematics, 55, 2015, 781-796. https://doi.org/10.1007/s10543-014-0522-0.
[50]    Komargodski, Z., Levin, D., Hermite Type Moving-Least-Squares Approximations, Computers & Mathematics with Applications, 51, 2006, 1223–1232. https://doi.org/10.1016/j.camwa.2006.04.005.
[51]    Lee, Y.J., Lee, S., Yoon, J., A Framework for Moving Least Squares Method with Total Variation Minimizing Regularization, Journal of Mathematical Imaging and Vision, 48, 2014, 566–582. https://doi.org/10.1007/s10851-013-0428-5.
[52]    Fasshauer, G.E., Zhang, J.G., Iterated Approximate Moving Least Squares Approximation, in: Advances in Meshfree Techniques, Springer Netherlands, Dordrecht, 2007: pp. 221–239. https://doi.org/10.1007/978-1-4020-6095-3_12.
[53]    Zheng, S., Feng, R., Huang, A., A Modified Moving Least-Squares Suitable for Scattered Data Fitting with Outliers, Journal of Computational and Applied Mathematics, 370, 2020,. https://doi.org/10.1016/j.cam.2019.112655.
[54]    Atkinson, A., Riani, M., Regression and the Forward Search, in: Robust Diagnostic Regression Analysis, Springer, New York, 2000: pp. 16–42. https://doi.org/10.1007/978-1-4612-1160-0_2.
[55] Li, W., Song, G., Yao, G., Piece-Wise Moving Least Squares Approximation, Applied Numerical Mathematics, 115, 2017, 68–81. https://doi.org/10.1016/j.apnum.2017.01.001.
[56]    Trask, N., Maxey, M., Hu, X., Compact Moving Least Squares: An Optimization Framework for Generating High-Order Compact Meshless Discretizations, Journal of Computational Physics, 326, 2016, 596–611. https://doi.org/10.1016/j.jcp.2016.08.045.
[57]    Dabboura, E., Sadat, H., Prax, C., A Moving Least Squares Meshless Method for Solving the Generalized Kuramoto-Sivashinsky Equation, Alexandria Engineering Journal, 55, 2016, 2783–2787. https://doi.org/10.1016/j.aej.2016.07.024.
[58]    Li, X., Li, S., On the Augmented Moving Least Squares Approximation and the Localized Method of Fundamental Solutions for Anisotropic Heat Conduction Problems, Engineering Analysis with Boundary Elements, 119, 2020, 74–82. https://doi.org/10.1016/j.enganabound.2020.07.007.
[59]    Wang, F., Qu, W., Li, X., Augmented Moving Least Squares Approximation Using Fundamental Solutions, Engineering Analysis with Boundary Elements, 115, 2020, 10–20. https://doi.org/10.1016/j.enganabound.2020.03.003.
[60]    Qu, W., Fan, C.-M., Li, X., Analysis of an Augmented Moving Least Squares Approximation and the Associated Localized Method of Fundamental Solutions, Computers & Mathematics with Applications, 80, 2020, 13–30. https://doi.org/10.1016/j.camwa.2020.02.015.
[61]    Tey, W.Y., Lee, K.M., Asako, Y., Tan, L.K., Arai, N., Multivariable Power Least Squares Method: Complementary Tool for Response Surface Methodology, Ain Shams Engineering Journal, 11, 2020, 161-169. https://doi.org/10.1016/j.asej.2019.08.002.
[62]    Ren, H., Cheng, Y., The Interpolating Element-Free Galerkin (IEFG) Method for Two-Dimensional Potential Problems, Engineering Analysis with Boundary Elements, 36, 2012, 873–880. https://doi.org/10.1016/j.enganabound.2011.09.014.
[63]    Ren, H., Cheng, J., Huang, A., The Complex Variable Interpolating Moving Least-Squares Method, Applied Mathematics and Computation, 219, 2012, 1724–1736. https://doi.org/10.1016/j.amc.2012.08.013.
[64]    Wang, B., Moving Least Squares Method for a One-Dimensional Parabolic Inverse Problem, Abstract and Applied Analysis, 2014, 2014, 1–12. https://doi.org/10.1155/2014/686020.
[65]    Wang, Q., Zhou, W., Cheng, Y., Ma, G., Chang, X., Miao, Y., Chen, E., Regularized Moving Least-Square Method and Regularized Improved Interpolating Moving Least-Square Method with Nonsingular Moment Matrices, Applied Mathematics and Computation, 325, 2018, 120–145. https://doi.org/10.1016/j.amc.2017.12.017.
[66]    Wang, Q., Zhou, W., Feng, Y.T., Ma, G., Cheng, Y., Chang, X., An Adaptive Orthogonal Improved Interpolating Moving Least-Square Method and a New Boundary Element-Free Method, Applied Mathematics and Computation, 353, 2019, 347–370. https://doi.org/10.1016/j.amc.2019.02.013.
[67]    Cheng, Y.-M., Li, J.-H., A Meshless Method with Complex Variables for Elasticity, Acta Physica Sinica, 54, 2005, 4463–4471.
[68]    Ren, H., Cheng, Y., The Interpolating Element-Free Galerkin (IEFG) Method for Two-Dimensional Potential Problems, Engineering Analysis with Boundary Elements, 36, 2012, 873–880. https://doi.org/10.1016/j.enganabound.2011.09.014.
[69] Li, X., Three-Dimensional Complex Variable Element-Free Galerkin Method, Applied Mathematical Modelling, 63, 2018, 148–171. https://doi.org/10.1016/j.apm.2018.06.040.
[70]    Dai, B., Wei, D., Ren, H., Zhang, Z., The Complex Variable Meshless Local Petrov–Galerkin Method for Elastodynamic Analysis of Functionally Graded Materials, Applied Mathematics and Computation, 309, 2017, 17–26. https://doi.org/10.1016/j.amc.2017.03.042.
[71]    Cheng, H., Peng, M.J., Cheng, Y.M., A Hybrid Improved Complex Variable Element-Free Galerkin Method for Three-Dimensional Advection-Diffusion Problems, Engineering Analysis with Boundary Elements, 97, 2018, 39–54. https://doi.org/10.1016/j.enganabound.2018.09.007.
[72]    Cheng, H., Peng, M.J., Cheng, Y.M., Analyzing Wave Propagation Problems with the Improved Complex Variable Element-Free Galerkin Method, Engineering Analysis with Boundary Elements, 100, 2019, 80–87. https://doi.org/10.1016/j.enganabound.2018.02.001.
[73]    Tey, W.Y., Lee, K.M., Asako, Y., Tan, L.K., Arai, N., Multivariable Power Least Squares Method: Complementary Tool for Response Surface Methodology, Ain Shams Engineering Journal, 11, 2020, 161–169. https://doi.org/10.1016/j.asej.2019.08.002.
[74]    Akgül, A., Inc, M., Karatas, E., Reproducing Kernel Functions for Difference Equations, Discrete & Continuous Dynamical Systems - S, 8, 2015, 1055–1064. https://doi.org/10.3934/dcdss.2015.8.1055.
[75]    Akgül, A., New Reproducing Kernel Functions, Mathematical Problems in Engineering, 2015, 2015, Article ID 158134. https://doi.org/10.1155/2015/158134.
[76]    Baleanu, D., Fernandez, A., Akgül, A., On a Fractional Operator Combining Proportional and Classical Differintegrals, Mathematics, 8, 2020, https://doi.org/10.3390/math8030360.
[77]    Liu, W.-K., Li, S., Belytschko, T., Moving Least-Square Reproducing Kernel Methods (I) Methodology and Convergence, Computer Methods in Applied Mechanics and Engineering, 143, 1997, 113–154. https://doi.org/10.1016/S0045-7825(96)01132-2.
[78]    Salehi, R., Dehghan, M., A Generalized Moving Least Square Reproducing Kernel Method, Journal of Computational and Applied Mathematics, 249, 2013, 120–132. https://doi.org/10.1016/j.cam.2013.02.005.
[79]    Mou, Y., Zhou, L., You, X., Lu, Y., Chen, W., Zhao, X., Multiview Partial Least Squares, Chemometrics and Intelligent Laboratory Systems, 160, 2017, 13–21. https://doi.org/10.1016/j.chemolab.2016.10.013.
[80]    Talukdar, U., Hazarika, S.M., Gan, J.Q., A Kernel Partial Least Square Based Feature Selection Method, Pattern Recognition, 83, 2018, 91–106. https://doi.org/10.1016/j.patcog.2018.05.012.
[81]    Özkale, M.R., Kuran, Ö., Principal Components Regression and R-k Class Predictions in Linear Mixed Models, Linear Algebra and Its Applications, 543, 2018, 173–204. https://doi.org/10.1016/j.laa.2018.01.001.
[82]    Kalogridis, I., van Aelst, S., Robust Functional Regression Based on Principal Components, Journal of Multivariate Analysis, 173, 2019, 393–415. https://doi.org/10.1016/j.jmva.2019.04.003.
[83]    de Jong, S., Kiers, H.A.L., Principal Covariates Regression, Chemometrics and Intelligent Laboratory Systems, 14, 1992, 155–164. https://doi.org/10.1016/0169-7439(92)80100-I.
[84]    Vervloet, M., van Deun, K., van den Noortgate, W., Ceulemans, E., Model Selection in Principal Covariates Regression, Chemometrics and Intelligent Laboratory Systems, 151, 2016, 26–33. https://doi.org/10.1016/j.chemolab.2015.12.004.
[85]    Zhao, W., Lian, H., Ma, S., Robust Reduced-Rank Modeling via Rank Regression, Journal of Statistical Planning and Inference, 180, 2017, 1–12. https://doi.org/10.1016/j.jspi.2016.08.009.
[86]    Kiers, H.A.L., Smilde, A.K., A Comparison of Various Methods for Multivariate Regression with Highly Collinear Variables, Statistical Methods and Applications, 16, 2007, 193–228. https://doi.org/10.1007/s10260-006-0025-5.
[87]    Lai, K.Y., Tan, L.K., Yutaka, A., Lee, K.Q., Chuan, Z.L., Wan, N.S., Koji, H., Pacaba, A.G., Gan, Y.S., Tey, W.Y., Calvin, K.L.S., Jane, O.K., Akira, T., Cloud Optical Depth Retrieval via Sky’s Infrared Image for Solar Radiation Prediction, Journal of Advanced Research in Fluid Mechanics and Thermal Science, 58, 2019, 1–14.
[88]    Zhang, Y., Kim, C.-W., Beer, M., Dai, H., Soares, C.G., Modeling Multivariate Ocean Data Using Asymmetric Copulas, Coastal Engineering, 135, 2018, 91–111. https://doi.org/10.1016/j.coastaleng.2018.01.008.
[89]    Kiew, P.L., Toong, J.F., Screening of Significant Parameters Affecting Zn (II) Adsorption by Chemically Treated Watermelon Rind, Progress in Energy and Environment, 6, 2018, 19–32.
[90]    Nayak, M.G., Vyas, A.P., Optimization of Microwave-Assisted Biodiesel Production from Papaya Oil Using Response Surface Methodology, Renewable Energy, 138, 2019, 18–28. https://doi.org/10.1016/j.renene.2019.01.054.
[91]    Cheah, C.K., Tey, W.Y., Construction on Morphology of Aquatic Animals via Moving Least Squares Method, Journal of Physics: Conference Series, 2020. https://doi.org/10.1088/1742-6596/1489/1/012014.
[92]    Sober, B., Aizenbud, Y., Levin, D., Approximation of Functions over Manifolds: A Moving Least-Squares Approach, Journal of Computational and Applied Mathematics, 383, 2021, Article ID 113140. https://doi.org/10.1016/j.cam.2020.113140.