Buckling of Shell Panels Made of Fiberglass and Reinforced with ‎an Orthogonal Grid of Stiffeners

Document Type : Research Paper

Author

Department of Computer Science, Saint Petersburg State University of Architecture and Civil Engineering, 4, 2nd Krasnoarmeyskaya st.,‎ Saint-Petersburg, 190005, Russia

Abstract

The paper presents an approach to the stress-strain and buckling analysis in fiberglass cylindrical and conical panels reinforced from the concave side with an orthogonal grid of stiffeners. A mathematical model of the Timoshenko (Mindlin–Reissner) type is used. Transverse shears and geometric nonlinearity are taken into account. The stiffeners are introduced in two ways: using the method of refined discrete introduction and the method of structural anisotropy. We use a computational algorithm based on the Ritz method and the best parameter continuation method. We also provide buckling load values and make a comparison between two types of approaches to account for stiffeners, which shows good convergence.

Keywords

Main Subjects

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[1] Reza Ghasemi, A., Tabatabaeian, A., Hadi Hajmohammad, M., Tornabene, F., Multi-Step Buckling Optimization Analysis of Stiffened and Unstiffened Polymer Matrix Composite Shells: A New Experimentally Validated Method, Composite Structures, 2021, 273, 114280. DOI: 10.1016/j.compstruct.2021.114280.
[2] Kidane, S., Li, G., Helms, J., Pang, S.-S., Woldesenbet, E., Buckling load analysis of grid stiffened composite cylinders, Composites Part B: Engineering, 2003, 34(1), 1–9. DOI: 10.1016/S1359-8368(02)00074-4.
[3] McElman, J.A., Mikulas, Jr.M.M., Stein, M., Static and dynamic effects of eccentric stiffening of plates and cylindrical shells, AIAA Journal, 1966, 4(5), 887–894. DOI: 10.2514/3.3562.
[4] Lee, Y.-S., Kim, Y.-W., Vibration analysis of rotating composite cylindrical shells with orthogonal stiffeners, Computers & Structures, 1998, 69(2), 271–281. DOI: 10.1016/S0045-7949(97)00047-3.
[5] Zhao, X., Liew, K.M., Ng, T.Y., Vibrations of rotating cross-ply laminated circular cylindrical shells with stringer and ring stiffeners, International Journal of Solids and Structures, 2002, 39(2), 529–545. DOI: 10.1016/S0020-7683(01)00194-9.
[6] Talebitooti, M., Ghayour, M., Ziaei-Rad, S., Talebitooti, R., Free vibrations of rotating composite conical shells with stringer and ring stiffeners, Archive of Applied Mechanics, 2010, 80(3), 201–215. DOI: 10.1007/s00419-009-0311-4.
[7] Prusty, B.G., Free vibration and buckling response of hat-stiffened composite panels under general loading, International Journal of Mechanical Sciences, 2008, 50(8), 1326–1333. DOI: 10.1016/j.ijmecsci.2008.03.003.
[8] Jaunky, N., Knight, N.F., Ambur, D.R., Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels, Composites Part B: Engineering, 1996, 27(5), 519–526. DOI: 10.1016/1359-8368(96)00032-7.
[9] Wang, B., Tian, K., Hao, P., Zheng, Y., Ma, Y., Wang, J., Numerical-based smeared stiffener method for global buckling analysis of grid-stiffened composite cylindrical shells, Composite Structures, 2016, 152, 807–815. DOI: 10.1016/j.compstruct.2016.05.096.
[10] Buragohain, M., Velmurugan, R., Buckling Analysis of Composite Hexagonal Lattice Cylindrical Shell using Smeared Stiffener Model, Defense Science Journal, 2009, 59(3), 230–238. DOI: 10.14429/dsj.59.1516.
[11] Jones, R.M., Buckling of circular cylindrical shells with multiple orthotropic layers and eccentric stiffeners, AIAA Journal, 1968, 6(12), 2301–2305. DOI: 10.2514/3.4986.
[12] Sadeghifar, M., Bagheri, M., Jafari, A.A., Buckling analysis of stringer-stiffened laminated cylindrical shells with nonuniform eccentricity, Archive of Applied Mechanics, 2011, 81(7), 875–886. DOI: 10.1007/s00419-010-0457-0.
[13] Ren, M., Li, T., Huang, Q., Wang, B., Numerical investigation into the buckling behavior of advanced grid stiffened composite cylindrical shell, Journal of Reinforced Plastics and Composites, 2014, 33(16), 1508–1519. DOI: 10.1177/0731684414537881.
[14] Karpov, V.V., Semenov, A.A., Refined model of stiffened shells, International Journal of Solids and Structures, 2020, 199, 43–56. DOI: 10.1016/j.ijsolstr.2020.03.019.
[15] Semenov, A.A., Leonov, S.S., The Continuous Method of Solution Continuation with Respect to the Best Parameter in the Calculation of Shell Structure, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2019, 161(2), 230–249. DOI: 10.26907/2541-7746.2019.2.230-249.
[16] Tyshkevich, V.N., The choice of criteria for the strength of pipes made of reinforced plastics, Izv VSTU, 2011, (5(78)), 76–79.