On the Thermo-elastic Response of FG-CNTRC Cross-ply ‎Laminated Plates under Temperature Loading using a New HSDT‎

Document Type : Research Paper

Authors

1 Water Resources, Soil and Environment Laboratory, Civil Engineering Department, Faculty of Architecture and Civil Engineering, University of AT,‎ Laghouat, Ghardaia road BP 37G, Algeria

2 Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Algeria

3 Department of Technology, University Centre of Naama, Naama 45000, Algeria

4 Structural Engineering and Mechanics of Materials Laboratory, Department of Civil Engineering, Mascara, Algeria

5 Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Eastern Province, Saudi Arabia

6 YFL (Yonsei Frontier Lab), Yonsei University, Seoul, Korea

Abstract

In this paper, we present a mathematical model based on the new higher shear deformation plate theory to investigate the thermo-elastic response of carbon nanotube reinforced composites (CNTRC) cross-ply laminated plates under temperature loading. Functionally graded distributions (FG) and uniform distribution (UD) of carbon nanotube reinforcement material are examined. A higher-order deformation plate that contains only four unknowns is utilized together with the principle of virtual displacement to derive the governing equations of CNTRC cross-ply laminated plates with simply supported edge conditions. Subsequently, Navier’s solution is proposed for simply supported cross-ply CNTR composite laminated plates subject to linear, nonlinear and combined variations in temperature through plate thickness. The analytical model was validated by comparing the obtained primary outcomes with those available in the literature. The numerical results of present simple analytical model are presented to show the influence of the CNT volume fraction, laminated composite structure, side to thickness and aspect ratio on the thermal stresses and deflection of the CNTRC cross-ply laminated plates.

Keywords

Main Subjects

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

‎[1]‎ Sayyad, A.S., Shinde, B.M., and Ghugal, Y.M., Thermo-elastic bending analysis of laminated composite plates according to various shear ‎deformation theories, Open Engineering, 5(1), 2015, 18–30.‎
‎[2]‎ Shen, H.S., The effects of hygro-thermal conditions on the dynamic response of shear deformable laminated plates resting on elastic ‎foundations, Journal of Reinforced Plastics and Composites, 23(10), 2004, 1095-1113.‎
‎[3]‎ Bouazza, M., Kenouza, Y., Benseddiq, N., Zenkour, A.M., A two-variable simplified nth-higher-order theory for free vibration behavior of ‎laminated plates, Composite Structures, 182, 2017, 533-541.‎
‎[4]‎ Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K., Wagner, H.D., Thermo-mechanical properties of randomly oriented carbon/epoxy ‎nanocomposites, Composites Part A, 36(11), 2005, 1555–61.‎
‎[5]‎ Bonnet, P., Sireude, D., Garnier, B., Chauvet, O., Thermal properties and percolation in carbon nanotube–polymer composites, Journal of Applied ‎Physics, 91(20), 2007, 201910.‎
‎[6]‎ Han, Y., Elliott, J., Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Computational Materials ‎Science, 39(2), 2007, 315–323.‎
‎[7]‎ Zhu, R., Pan, E., Roy, A.K., Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites, Materials ‎Science and Engineering: A, 447(1-2), 2007, 51–7.‎
‎[8]‎ Wang Z.X., Shen H.S., Nonlinear vibration of nanotube-reinforced composite plates in thermal environments, Computational Materials Science, ‎‎50(8), 2011, 2319–2330‎
‎[9]‎ Zarei, H., Fallah, M., Bisadi, H., Daneshmehr, A., Minak, G., Multiple impact response of temperature-dependent carbon nanotube -reinforced ‎composite (CNTRC) plates with general boundary conditions, Composites Part B, 113, 2017, 206-217.‎
‎[10]‎ Benguediab, S., Tounsi, A., Zidour, M., Abdelwahed, S., Chirality and scale effects on mechanical buckling properties of zigzag double-walled ‎carbon nanotubes , Composites Part B, 57, 2014, 21-24.‎
‎[11]‎ Salem. D., Synthèse de nanotubes de carbone mono-feuillets individuels et composites modèles polymers nanotubes de carbone. Application à ‎l’effet photovoltaïque, Ph.D thesis, University of Strasbourg, 2012, (In French).‎
‎[12]‎ Qian, D., Dickey, E.C., Andrews, R., Rantell, T., Load transfer and deformation mechanisms in carbon nanotubes-polystyrene composites, Applied ‎Physics Letters, 76(20), 2000, 2868-2870.‎
‎[13]‎ Zhu, P., Lei, Z.X., and Liew, K.M.,  Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method ‎with first order shear deformation plate theory, Composite Structure, 94(4), 2012, 1450-1460.‎
‎[14]‎ Farazin, A., Aghadavoudi, F., Motififard, M., Saber-Samandari, S., Khandan, A., Nanostructure, Molecular Dynamics Simulation and Mechanical ‎Performance of PCL Membranes Reinforced with Antibacterial Nanoparticles, Journal of Applied and Computational Mechanics, 7(4), 2021, 1907–1915.‎
‎[15]‎ Popov, V.N., Doren, V.E.V., and Balkanski, M., Elastic properties of crystals of single-walled carbon nanotubes, Solid State Communication, 114(7), ‎‎2000, 395-399.‎
‎[16]‎ Draoui, A., Zidour, M., Tounsi, A., Adim, B., Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT), Journal of Nano ‎Research, 57, 2019, 117–135.‎
‎[17]‎ Alibeigloo, A., Liew, K.M., Thermo-elastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity, ‎Composite Structure, 106, 2013, 873-881.‎
‎[18]‎ Bakhti, A., Kaci, A., Bousahla, A.A., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A., Large deformation analysis for functionally graded carbon ‎nanotube-reinforced composite plates using an efficient and simple refined theory, Steel and Composite Structures, 14(4), 2013, 335-347.‎
‎[19]‎ Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., et al., Effect of nonlinear FG-CNT distribution on mechanical ‎properties of functionally graded nano-composite beam, Structural Engineering and Mechanics, 78(2), 2021, 117-124.‎
‎[20]‎ Sobhy, M., Levy solution for bending response of FG carbon nanotube reinforced plates under uniform, linear, sinusoidal and exponential ‎distributed loadings, Engineering Structures, 182, 2019, 198–212.‎
‎[21]‎ Zeverdejani, M. K., Beni, Y.T., Effect of laminate configuration on the free vibration/buckling of FG Graphene/PMMA composites, Advances in Nano ‎Research, 8(2), 2020, 103-114.‎
‎[22]‎ Zeverdejani, M.K., Beni, Y.T., Kiani, Y., Multi-scale buckling and post-buckling analysis of functionally graded laminated composite plates ‎reinforced by defective graphene sheets, International Journal of Structural Stability and Dynamics, 20(01), 2020, 2050001.‎
‎[23]‎ Kiani, Y., Torsional vibration of functionally graded carbon nanotube reinforced conical shells, Science and Engineering of Composite Materials, 25(1), ‎‎2018, 41–52‎
‎[24]‎ Long, V.T., Tung, H.V., Thermal postbuckling behavior of CNT-reinforced composite sandwich plate models resting on elastic foundations with ‎tangentially restrained edges and temperature dependent properties, Journal of Thermoplastic Composite Materials, 33(10), 2020, 1396-1428. ‎
‎[25]‎ Han, J.W., Kim, J.S., Cho, M., New enhanced first-order shear deformation theory for thermo-mechanical analysis of laminated and sandwich ‎plates, Composites Part B, 116, 2016,422-450.‎
‎[26]‎ Daikh, A.A., Bachiri, A., Houari, M.S.A., Tounsi, A., Merzouki, T., On static bending of multilayered carbon nanotube Reinforced composite plates, ‎Computers and Concrete, 26(2), 2020, 137-150.‎
‎[27]‎ Fazzolari, F.A., Banerjee, J.R., Boscolo, M., Buckling of composite plate assemblies using higher order shear deformation theory-An exact method ‎of solution, Thin-Walled Structure, 71, 2013, 18-34.‎
‎[28]‎ Khdeir, A.A., Reddy, J.N., Thermal stresses and deflections of cross-ply laminated plates using refined plate theories, Journal of Thermal Stresses, ‎‎14(4), 1991,419-438.‎
‎[29]‎ Zenkour, A.M., Analytical solution for bending of cross-ply laminated plates under thermo-mechanical loading, Composite Structures, 65(3-4), ‎‎2004, 367–379.‎
‎[30]‎ Shen, H.S., Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Composite Structures, ‎‎91(1), 2009, 9-19. ‎
‎[31]‎ Bakhadda, B., Bouiadjra, B.M., Bourada, F., Bousahla, A.A., Tounsi, A., Mahmoud, S.R., Dynamic and bending analysis of carbon nanotube-‎reinforced composite plates with elastic foundation, Wind and Structures, 27(5), 2018, 311–324.‎
‎[32]‎ Naik, N.S., Sayyad, A.S., An accurate computational model for thermal analysis of laminated composite and sandwich plates, Journal of Thermal ‎Stresses, 42(5), 2019, 559-579.‎
‎[33]‎ Kaci, A., Tounsi, A., Bakhti, K., Adda Bedia, E.A., Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite ‎plates, Steel and Composite Structures, 12(6), 2012, 491-504.‎
‎[34]‎ Kamarian, S., Bodaghi, M., Isfahani, R.B., Song, J.I., Thermal buckling analysis of sandwich plates with soft core and CNT-Reinforced composite ‎face sheets, Journal of Sandwich Structures & Materials, 23(8), 2021, 3606-3644.‎
‎[35]‎ Daikh, A.A., Megueni, A., Thermal buckling analysis of functionally graded sandwich plates, Journal of Thermal Stresses, 41(2), 2018, 139–159. ‎
‎[36]‎ Daikh, A.A., Houari, M.S.A., Tounsi, A., Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain ‎gradient theory, Engineering Research Express, 1(1), 2019, 015022‎
‎[37]‎ Daikh, A.A., Guerroudj, M., ElAdjrami, M., Megueni, A., Thermal Buckling of Functionally Graded Sandwich Beams, Advanced Materials Research, ‎‎1156, 2019, 43–59. ‎
‎[38]‎ Daikh, A.A., Zenkour, A.M., Effect of porosity on the bending analysis of various functionally graded sandwich plates, Materials Research Express, ‎‎6(6), 2019, 065703.‎
‎[39]‎ Houari, M.S.A, Benyoucef, S., Mechab, T., Tounsi, A., Bedia, E.A.A., Two-Variable Refined Plate Theory for Thermoelastic Bending Analysis of ‎Functionally Graded Sandwich Plates, Journal of Thermal Stresses, 34(4), 2011, 315-334. ‎
‎[40]‎ Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A., Bég, A., Bending analysis of FGM plates under hygro-thermo-mechanical loading using a ‎four variable refined plate theory, Aerospace Science and Technology, 34, 2014, 24–34.‎
‎[41]‎ Pashmforoush, F., Finite element analysis of low velocity impact on carbon fibers/carbon nanotubes reinforced polymer composites, Journal of ‎Applied and Computational Mechanics, 6(3), 2020, 383-393.‎
‎[42]‎ Mehar, K., Panda, S.K., Theoretical deflection analysis of multi-walled carbon nanotube reinforced sandwich panel and experimental verification, ‎Composites Part B, 167, 2019, 317-328.‎
‎[43]‎ Adhikari, B., Singh, B.N., Thermo-elastic analysis of laminated functionally graded CNT plates, AIAA SciTech Forum, 7(11), 2019, 1-23.‎
‎[44]‎ Akbas, S.D., Kocatürk, T., Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature, Journal of ‎Thermal Stresses, 36(12), 2013, 1233-1254.‎
‎[45]‎ Akbas, S.D., Free vibration of axially functionally graded beams in thermal environment, International Journal of Engineering and Applied ‎Sciences, 6(3), 2014, 37-51.‎
‎[46]‎ Reddy, J.N., Hsu, Y.S., Effects of shear deformation and anisotropy on the thermal bending of layered composite plates, Journal of Thermal Stresses, ‎‎3(4), 1980, 475-493.‎
‎[47]‎ Ansari, M.I., Kumar, A., Bending analysis of functionally graded CNT reinforced doubly curved singly ruled truncated rhombic cone, Mechanics ‎Based Design of Structures and Machines, 47(1), 2019, 67-86.‎
‎[48]‎ Ansari, M.I., Kumar, A., Flexural analysis of functionally graded CNT-reinforced doubly curved singly ruled composite truncated cone, Journal of ‎Aerospace Engineering, 32(2), 2019, 04018154.‎
‎[49]‎ Ansari, M.I., Kumar, A., Fic, S., Barnat-Hunek, D., Flexural and free vibration analysis of CNT-reinforced functionally graded ‎plate, Materials, 11(12), 2018, 2387.‎
‎[50]‎ Ansari, M.I., Kumar, A., Barnat-Hunek, D., Suchorab, Z., Andrzejuk, W., Majerek, D., Static and dynamic response of FG-CNT-reinforced rhombic ‎laminates, Applied Sciences, 8(5), 2018, 834.‎
‎[51]‎ Chaubey, A.K., Kumar, A., Chakrabarti, A., Vibration of laminated composite shells with cutouts and concentrated mass, AIAA Journal, 56(4), ‎‎2018, 1662-1678.‎
‎[52]‎ Chaubey, A.K., Kumar, A., Mishra, S.S., Dynamic analysis of laminated composite rhombic elliptic paraboloid due to mass variation, Journal of ‎Aerospace Engineering, 31(5), 2018, 04018059.‎
‎[53]‎ Anish, K.A., Chakrabarti, A., Influence of openings and additional mass on vibration of laminated sandwich rhombic plates using IHSDT, Journal ‎of Thermoplastic Composite Materials, 33(1), 2020, 3-34.‎
‎[54]‎ Akbas, S.D., Large deflection analysis of a fiber reinforced composite beam, Steel and Composite Structures, 27(5), 2018, 567-576.‎
‎[55]‎ Akbas, S.D., Nonlinear static analysis of laminated composite beams under hygro-thermal effect, Structural Engineering and Mechanics, 72(4), 2019, ‎‎433-441.‎
‎[56]‎ Akbas, S.D., Dynamic analysis of a laminated composite beam under harmonic load, Coupled Systems Mechanics, 9(6), 2020, 563-573.‎
‎[57]‎ Akbas, S.D., Forced vibration analysis of a fiber reinforced composite beam, Advances in Materials Research, 10(1), 2021, 57-66.‎
‎[58]‎ Nguyen, P.D., Papazafeiropoulos, G., Vu, Q.V., Duc, N.D., Buckling response of laminated FG-CNT reinforced composite plates: Analytical and ‎finite element approach, Aerospace Science and Technology, 2022, 107368.‎
‎[59]‎ Reddy, J.N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Pres, New York, 2004.‎
‎[60]‎ Fazzolari, F.A., Thermo-elastic vibration and stability of temperature-dependent carbon nanotube-reinforced composite plates, Composite ‎Structures, 196, 2018, 199-214.‎
‎[61]‎ Bourada, F., Amara, K., Tounsi, A., Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory, Steel and ‎Composite Structures, 21(6), 2016, 1287-1306. ‎
‎[62]‎ Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Bedia, E.A.A., On the effect of the micromechanical models on the free vibration of ‎rectangular FGM plate resting on elastic foundation, Earthquakes and Structures, 14(2), 2018, 117-128. ‎
‎[63]‎ Bachiri, A., Bourada, M., Mahmoudi, A., Benyoucef, S., Tounsi, A., Thermodynamic effect on the bending response of elastic foundation FG plate ‎by using a novel four variable refined plate theory, Journal of Thermal Stresses, 41(8), 2018, 1042–1062.‎