Buckling Behavior of Nanocomposite Plates with Functionally ‎Graded Properties under Compressive Loads in Elastic and ‎Thermal Environments

Document Type : Research Paper

Authors

1 Department of Civil Engineering, Engineering Faculty, Istanbul Medeniyet University, Istanbul 34700, Turkey‎

2 Department of Mathematics, Istanbul Ticaret University, Beyoglu 34445/Istanbul, Turkey

3 Scientific Research Centers for Composition Materials of UNEC Azerbaijan State Economic University, Baku 1001, Azerbaijan

4 Department of Civil, Chemical, Environmental, and Materials Engineering, University Bologna, Italy‎

5 Department of Radio-electronics and Aerospace Systems, Azerbaijan Technical University, Baku 1001, Azerbaijan‎

Abstract

The buckling behavior of functionally graded carbon nanotube (FG-CNT) reinforced polymer-based moderately-thick plates subjected to in-plane biaxial compressive loads in elastic and thermal environments in the framework of first-order shear deformation plate theory (FSDPT) is investigated. First, the temperature-dependent properties of CNTs and nanocomposites are defined and their constitutive relations are established, then the stability and strain compatibility equations in elastic media are derived in the framework of the FSDPT. Then, by applying the Galerkin method to the basic equations, a closed-form solution is obtained for the critical biaxial compressive loads. The specific numerical analyzes and interpretations are made for various plate sizes and CNT patterns on the Winkler elastic foundation and in thermal environments within FSDPT and classical plate theory (CPT).

Keywords

Main Subjects

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[1]‎ Lee, D.J., Kumar, V., Rubber Nanocomposites Reinforced with Single-Wall and Multiwall Carbon Nanotubes for ‎Industrial Applications, Rubber Chemistry and Technology, 93(1), 2020, 157–171. ‎
‎[2]‎ Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C., Hernandez, E., Electronic, Thermal and Mechanical Properties ‎of Carbon Nanotubes, Philosophical transactions. Series A, Mathematical, Physical, and Engineering Sciences, 362‎‎(1823), 2004, 2065–2098. ‎
‎[3]‎ Rahman, G., Najaf, Z., Mehmood, A., Bilal, S., Shah, A., Mian, S., Ali, G., An Overview of the Recent Progress in ‎the Synthesis and Applications of Carbon Nanotubes, Journal of Carbon Research, 5(1), 2019, 1-31.‎
‎[4]‎ Kumanek, B., Janas, D., Thermal conductivity of carbon nanotube networks: a review, Journal of Materials Science, 54(10), 2019, 7397–7427.‎
‎[5]‎ Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K., Dispersion and Functionalization of Carbon Nanotubes for ‎Polymer-Based Nanocomposites: A Review, Composites Part A: Applied Science and Manufacturing, 41(10), 2010, ‎‎1345–1367.‎
‎[6]‎ Khan, W., Sharma, R., Saini, P., Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications, ‎Intech Open, 2016.
‎[7]‎ Shen, H.S., Nonlinear Bending Of Functionally Graded Carbon Nanotube Reinforced Composite Plates In ‎Thermal Environments, Composite Structures, 91(1), 2009, 9–19. ‎
‎[8]‎ Lei, Z.X., Liew, K.M., Yu, J.L., Buckling Analysis of Functionally Graded Carbon Nanotube-Reinforced Composite ‎Plates Using the Element-Free Kp-Ritz Method, Composite Structures, 98, 2013, 160–168. ‎
‎[9]‎ Lei, Z.X., Zhang, L.W., Liew, K.M., Buckling Analysis of CNT Reinforced Functionally Graded Laminated ‎Composite Plates, Composite Structures, 152, 2016, 62–73. ‎
‎[10]‎ Mirzaei, M., Kiani, Y., Thermal Buckling of Temperature Dependent FG-CNT Reinforced Composite Plates, ‎Meccanica, 51(9), 2016, 2185–2201. ‎
‎[11]‎ Kiani, Y., Shear buckling of FG-CNT Reinforced Composite Plates using Chebyshev-Ritz method, Composites Part B: Engineering, 105, 2016, 176–187.‎
‎[12]‎ Kiani, Y., Buckling of FG-CNT-Reinforced Composite Plates Subjected to Parabolic Loading, Acta Mechanica, ‎‎228(4), 2017, 1303–1319. ‎
‎[13]‎ George, N., Jeyaraj, P., Murigendrappa, S.M., Buckling and Free Vibration of Nonuniformly Heated Functionally ‎Graded Carbon Nanotube Reinforced Polymer Composite Plate, International Journal of Structural Stability and Dynamics, 17(6), 2017, 1750064. ‎
‎[14]‎ Farzam, A., Hassani, B., Thermal and Mechanical Buckling Analysis of FG Carbon Nanotube Reinforced ‎Composite Plates Using Modified Couple Stress Theory and Isogeometric Approach, Composite Structures, 206, ‎‎2018, 774–790.‎
‎[15]‎ Jiao, P., Chen, Z., Ma, H., Zhang, D., Ge, P., Buckling Analysis of Thin Rectangular FG-CNTRC Plate Subjected to ‎Arbitrarily Distributed Partial Edge Compression Loads Based on Differential Quadrature Method, Thin-Walled Structures, 145, 2019, 106417.‎
‎[16]‎ Sedighi, H.M., Divergence and Flutter Instability of Magneto-Thermo-Elastic C-BN Hetero-Nanotubes Conveying ‎Fluid, Acta Mechanica Sinica, 36, 2020, 381-396.‎
‎[17]‎ Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A., Shirazi, A.H., Temperature-Dependent Physical ‎Characteristics of the Rotating Nonlocal Nanobeams Subject to a Varying Heat Source and a Dynamic Load, Facta Universitatis, Series: Mechanical Engineering, 19(4), 2021, 633-656.‎
‎[18]‎ Bhagat, V.S., George, N., Arunkumar, M.P., Pitchaimani, J., Lenin Babu, M.C., Numerical Analysis on Vibro-‎Acoustic Behavior of Honeycomb Core Sandwich Structure with FG-CNT-Reinforced Polymer Composite ‎Facings, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 46, 2022, 943–956.  ‎
‎[19]‎ Van Tien, N., Phuong, N.T., Duc, V.M., Minh, T.Q., Dong, D.T., Quan, P.H., Nam, V.H., Ly, L.N., Nonlinear Thermo-‎Mechanical Buckling of Torsion-Loaded Cylindrical Shells with Eccentric Stiffeners Made from CNT-Reinforced ‎Composite, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 46, 2022, 1107–1119. ‎
‎[20]‎ Bachiri, A., Daikh, A.A., Tounsi, A., On the Thermo-elastic Response of FG-CNTRC Cross-ply ‎Laminated Plates ‎under Temperature Loading using a New HSDT, Journal of Applied and Computational Mechanics, 8(4), 2022, 1370-‎‎1386.‎
‎[21]‎ Malekzadeh Fard, K., Khajehdehi Kavanroodi, M., Malek-Mohammadi, H., Pourmoayed, A., Buckling and ‎Vibration Analysis of a Double-layer Graphene ‎Sheet Coupled with a Piezoelectric Nanoplate, Journal of Applied and Computational Mechanics, 8(1), 2022, 129-143.‎
‎[22]‎ Bacciocchi, M., Fantuzzi, N., Luciano, R., Tarantino, A.M., Finite Element Solution of Vibrations and Buckling of ‎Laminated Thin Plates in Hygro-Thermal Environment Based on Strain Gradient Theory, Mechanics Based Design of Structures and Machines, 2022, 1-14. DOI: 10.1080/15376494.2022.2093425‎.
‎[23]‎ Saitta, S., Luciano, R., Vescovini, R., Fantuzzi, N., Fabbrocino, F., Free Vibrations and Buckling Analysis of ‎Cross-Ply Composite Nanoplates by Means of a Mesh Free Radial Point Interpolation Method, Composite Structures, 298, 2022, 115989.‎
‎[24]‎ Tornabene, F., Fantuzzi, N., Bacciocchi, M., Linear static response of nanocomposite plates and shells ‎reinforced by agglomerated carbon nanotubes, International Workshop Multi-Scale Innovations of Material Structures (MIMS), 115, 2017, 449-476.‎
‎[25]‎ Sofiyev, A., Usame, K., Investigation of Buckling Behavior of Functionally Graded Carbon Nanotube Patterned ‎Polymer Plates in Thermal Environments, UNEC Journal of Engineering and Applied Sciences, 2(1), 2022, 19-25.‎
‎[26]‎ Hu, Z., Zhou, C., Ni, Z., Lin, X., Li, R., New Symplectic Analytic Solutions for Buckling of CNT Reinforced ‎Composite Rectangular Plates, Composite Structures, 303, 2023, 116361.‎
‎[27]‎ Babaei, H., Thermoelastic Buckling and Post-Buckling Behavior of Temperature-Dependent Nanocomposite ‎Pipes Reinforced with CNTs, European Physical Journal Plus, 136(10), 2021. DOI: 10.1140/epjp/s13360-021-01992-x.
‎[28]‎ Babaei, H., Kiani, Y., Eslami, M.R., Perturbation Method for Thermal Post-Buckling Analysis of Shear Deformable ‎FG-CNTRC Beams with Different Boundary Conditions, International Journal of Structural Stability and Dynamics, ‎‎21(13), 2021, 2150175.‎
‎[29]‎ Zhang, L.W., Lei, Z.X., Liew, K.M., An Element-free IMLS-Ritz Framework for Buckling  Analysis of FG–CNT ‎Reinforced Composite Thick Plates Resting on Winkler Foundations, Engineering Analysis with Boundary Elements, 58, 2015, 7–17.‎
‎[30]‎ Tung, H.V., Thermal and Thermomechanical Postbuckling of FGM Sandwich Plates Resting on Elastic ‎Foundations with Tangential Edge Constraints and Temperature Dependent Properties, Composite Structures, ‎‎131, 2015, 1028–1039.‎
‎[31]‎ Wattanasakulpong, N., Chaikittiratana, A., Exact Solutions for Static and Dynamic Analyses of Carbon ‎Nanotube-Reinforced Composite Plates with Pasternak Elastic Foundation, Applied Mathematical Modeling, ‎‎39(18), 2015, 5459–5472. ‎
‎[32]‎ Lei, Z.X., Zhang, L.W., Liew, K.M., Buckling of FG-CNT Reinforced Composite Thick Skew Plates Resting on ‎Pasternak Foundations Based on an Element-Free Approach, Applied Mathematics and Computation, 266, 2015, ‎‎773–791.‎
‎[33]‎ Zhang, L.W., Liew, K.M., Postbuckling Analysis of Axially Compressed CNT Reinforced Functionally Graded ‎Composite Plates Resting on Pasternak Foundations Using an Element-Free Approach, Composite Structures, ‎‎138, 2016, 40–51.‎
‎[34]‎ Tung, H.V., Thermal Buckling and Postbuckling Behavior of Functionally Graded Carbon Nanotube-Reinforced ‎Composite Plates Resting on Elastic Foundations with Tangential-Edge Restraints, Journal of Thermal Stresses, ‎‎40(5), 2017, 641–663.‎
‎[35]‎ Zhong, R., Wang, Q., Tang, J., Shuai, C., Liang, Q., Vibration Characteristics of Functionally Graded Carbon ‎Nanotube Reinforced Composite Rectangular Plates on Pasternak Foundation with Arbitrary Boundary ‎Conditions and Internal Line Supports, Curved and Layered Structures, 5, 2018, 10–34.‎
‎[36]‎ Long, V.T., Tung, H.V., Thermomechanical Postbuckling Behavior of CNT-Reinforced Composite Sandwich ‎Plate Models Resting on Elastic Foundations with Elastically Restrained Unloaded Edges, Journal of Thermal Stresses, 42(5), 2019, 658-680.‎
‎[37]‎ Babaei, H., Thermomechanical Analysis of Snap-Buckling Phenomenon in long FG-CNTRC Cylindrical Panels ‎Resting on Nonlinear Elastic Foundation, Composite Structures, 286, 2022, 115199.‎
‎[38]‎ Hieu, D.V., Phi, B.G., Sedighi, H.M., Sofiyev, A.H., Size-Dependent Nonlinear Vibration of Functionally Graded ‎Composite Micro-Beams Reinforced by Carbon Nanotubes with Piezoelectric Layers in Thermal ‎Environments, Acta Mechanica, 233, 2022, 2249–2270.‎
‎[39]‎ Sofiyev, A.H., Kadioglu, F., Khalilov, I.A., Sedighi, H.M., Vergul, T., Yenialp, R., On the Torsıonal Bucklıng ‎Moment of Cylındrıcal Shells Consıstıng of Functıonally Graded Materıals Restıng on the Pasternak-Type Soıl, ‎SOCAR Proceedings, SI1, 2022, 016-022.‎
‎[40]‎ Ambartsumyan, S.A., Theory of Anisotropic Plates, Nauka, Moscow, 1967 [in Russian]‎
‎[41]‎ Eslami, M.R., Buckling and Postbuckling of Beams, Plates and Shells, Springer, Switzerland, 2018.‎
‎[42]‎ Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, New York, 2008.‎
[43]‎ Akhmedov, N.K., Mektiyev, M.F., The Axisymmetric Problem of the Theory of Elasticity for a Non-Uniform Plate of ‎Variable Thickness, Journal of Applied Mathematics and Mechanics, 59(3), 1995, 491-495.‎