Experimental Study and Numerical Simulation of Cutting and Tearing of Silicone Rubber using Extended Finite Element Method

Document Type : Research Paper

Authors

1 Laboratoire de Systémes et de Mécanique Appliquée (LASMAP) Ecole Polytechnique de Tunis, Université de Carthage 2078, La Marsa, Tunisia

2 Vestechpro, Apparel research and innovation center, 7000 Rue Marie-Victorin, Montréal, QC H1G 2J6, Canada

3 Laboratoire des Energies renouvelables et des Matériaux Avancés (LERMA), Université Internationale de Rabat, Morocco

Abstract

Failure of soft materials is a fundamental challenge due to the strongly nonlinear and dissipative deformation involved. An experimental and extended finite element study of dynamic crack in silicone rubber are investigated. Hence, material preparation procedures, details of sample as well as testing apparatus which have been used for cutting, pure shear tests are presented. First, the rate of energy restitution and an instantaneous propagation speed were achieved. The crack propagation speed / energy release rate relationships are given for the different strain rates. second, an analysis of the mechanical fields and stress state in the fracture process zone is proposed. Finally, cutting force evolution according to stretches is established. Then, an energy-based approach was introduced. Results show that the cutting force and the total cutting energy decreases significantly with increasing deformation rate.

Keywords

Main Subjects

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[1] Rochow, E.G., INTRODUCTION A LA CHIMIE DES SILICONES, Dunod, Paris, 2ème édition, 1952.
[2] Meunier, L., Chagnon G., Favier D, Orgéas L., Vacher P., Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber, Polymer Testing, 27, 2018, 765-777. 
[3] Corre, T., Rupture dynamique de membranes élastomères: étude expérimentale par mesure de champs, Diss. École centrale de Nantes, 2018.
[4] Badr I., Frank H., Noel C., Comparison of the dimensional accuracy of one- and two-step techniques with the use of putty/wash addition silicone impression materials, Materials Science, 74, 1995, 535-541.
[5] Chauvel, B., Turpin Y.-L., Les matériaux à empreinte, Université Médicale Virtuelle Francophone, 2010.
[6] Bonsor S.J., Pearson G.J., A Clinical Guide to Applied Dental Materials, United Kingdom, Elsevier, 2013.
[7] Lake, G.J., Yeoh, O.H., Measurement of rubber cutting resistance in the absence of friction, International Journal of Fracture, 14, 1978, 509–526, 1978.
[8] Spagnoli, A., Terzano, M., Brighenti, R., Artoni, F., Ståhle, P., The fracture mechanics in cutting: A comparative study on hard and soft polymeric materials, International Journal of Mechanical Sciences, 148, 2018, 554–564
[9] Meunier, L., Chagnon G., Favier D., Orgeas L., Experimental and Numerical Study of the Mechanical Behaviour of an Unfilled Silicone Rubber, 5th European Conference on Constitutive Models for Rubber, ECCMR, Paris, France, 2007. 
[10] Baumberger, T., Caroli, C., Martina, D., Solvent control of crack dynamics in a reversible hydrogel, Materials Letters, 5, 2006, 552-555.
[11] Baumberger, T., Caroli, C., Martina, D., Fracture of a biopolymer gel as a viscoplastic disentanglement process, The European Physical Journal E, 21, 2006, 81-89.
[12] Triki, E., Combined puncture/cutting of elastomer membranes by pointed blades: an alternative approach of fracture energy, Mechanics of Materials, 97, 2016, 19–25.
[13] Abaqus Documentation, Dassault Systèmes, 2017.
[14] Gigliotti, L., Assessment of the applicability of XFEM in Abaqus for modeling crack growth in rubber, KTH School of Engineering Sciences, Department of Solid Mechanics, Royal Institute of Technology, Stockholm, Sweden, 2012.
[15] Freund, L.B., Dynamic Fracture Mechanics, Cambridge University Press, 1998.
[16] Griffith, A.A., The phenomena of fracture and flow in solids, Philosophical Transaction of the Royal Society, Series A, 221, 1921, 163-198.
[17] Rivlin, R.S., Thomas, A.G., Fracture of rubber. I. Characteristic energy for tearing, Journal of Applied Polymer Science, 3, 1953, 291–318.
[18] Zhu, Y., Luo, X., Ogden, R.W., Nonlinear axisymmetric deformations of an elastic tube under external pressure, European Journal of Mechanics - A/Solids, 29, 2009, 216.
[19] Triki, E., Nguyen-Tri, P., Gauvin, C., Combined puncture and cutting of elastomer membranes: A fracture energy approach, Journal of Applied Polymer Science, 134, 2017, 44945.
[20] Bouchbinder, E., Goldman, T., Fineberg, J., The dynamics of rapid fracture: instabilities, nonlinearities and length scales, Reports on Progress in Physics, 77(4), 2014, 046501.
[21] Greensmith, H.W., Thomas, A., Fracture of rubber. iii. determination of tear properties, Journal of Polymer Science Part A: Polymer Chemistry, 1955, 18(88), 189-200.
[22] Williams, M.L., Landel, R.F., Ferry, J.D., The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, Journal of the American Chemical Society, 77(14), 1995, 3701–3707.
[23] Gzaiel, M., Triki, E., Barkaoui, A., Chafra M., Finite element study of mixed fracture: velocity-dependent insertion of pointed blades into soft material, International Journal of Applied Mechanics, 13, 2021, 2150003. 
[24] Persson, B.N.J., Albohr, O., Heinrich, G., Ueba, H., Crack propagation in rubber-like materials, Journal of Physics: Condensed Matter, 17(44), 2005, R1071–R1142.
[25] Stephenson, R.A., The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials, Journal of Elasticity, 12, 1982, 65-99.
[26] Vu-Khanh, T., Vu, T.B.N., Nguyen, C.T., Lara J., Gants de protection: étude sur la résistance des gants aux agresseurs mécaniques multiples, IRSST, Études et recherches, Rapport, 2005.
[27] Triki, E., Nguyen-Tri, P., Gauvin, C., Azaiez, M., Vu-Khanh, T., Combined puncture/cutting of elastomer membranes by pointed blades: Characterization of mechanisms, Journal of Applied Polymer Science, 132(26), 2015, 42150. 
[28] Gent, A.N., Schultz, J., Effect of Wetting Liquids on the Strength of Adhesion of Viscoelastic Material, The Journal of Adhesion, 3(4), 1972, 281-294.
[29] Andrews, E.H., Kinloch, A.J., Mechanics of adhesive failure. I, Proceedings of the Royal Society A, 27, 1973, 385–399  
[30] Kamasamudram, V., Coret, M., Moës, N., The role played by viscoelasticity in the bulk material during the propagation of a dynamic crack in elastomers, International Journal of Fracture, 231, 2021, 43–58.
[31] Long, R., Hui, C., Fracture toughness of hydrogels: measurement and interpretation, Soft Matter, 12(39), 2016, 8069-8086.