Isogeometric Resolution of the Brinkman-Forchheimer-Darcy

Document Type : Research Paper

Authors

1 Department of Mathematics, MSISI, Laboratory, Faculty of Sciences and Techniques of Errachidia, Moulay Ismail University of Meknes, B.P 509 Boutalamine, Errachidia, Morocco

2 Mechanical Engineering Laboratory, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, B.P. 2202 Route Imouzzer, Fez, 30000, Morocco

3 Department of Mathematics Regional Centre for Professions of Education and Training (CREMF Fès-Meknès), Rue de Koweit 49, Ville Nouvelle, Fez, 30050, Morocco

4 Department of Mechanical Engineering, Faculty of Mechanical Engineering, Transylvania University of Brasov, Brasov, 500036, B-dul Eroilor 29, Romania

5 Department of Mathematics and Computer Science, Transilvania University of Brasov, Brasov, 500036, B-dul Eroilor 29, Romania

6 Academy of Romanian Scientists, Bucharest, 050045, Str. Ilfov, Nr. 3, Romania

Abstract

In this paper, we employ the finite element method based on non-uniform rational B-splines function approximation to solve the nonlinear Brinkman-Forcheimer-Darcy equation in a simply connected and bounded Lipschitz domain Ω. We provide both theoretical and numerical studies of the Dirichlet boundary problem. Utilizing a stream function formulation, we demonstrate the well-posedness of the weak form. Furthermore, we approximate the velocity and pressure fields by linearizing the nonlinear terms, resulting in an algebraic system. This Non-uniform rational B-splines method is more effective in terms of the exact representation of the geometry and the good approximation of the solution compared to the virtual element method. To validate the effectiveness of the non-uniform rational B-splines Finite Element Method, we conduct numerical simulations of fluid flow in porous media.

Keywords

Main Subjects

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[1] Vafai, K., Convective flow and heat transfer in variable-porosity media, Journal of Fluid Mechanics, 147, 1984, 233-259.
[2] Varsakelis, C., Papalexandris, M.V., On the well-posedness of the Darcy–Brinkman–Forchheimer equations for coupled porous media-clear fluid flow, Nonlinearity, 30(4), 2017, 1449.
[3] Whitaker, S., The method of volume averaging, Springer Science & Business Media, 13, 1998.
[4] Whitaker, S., The Forchheimer equation: a theoretical development, Transport in Porous Media, 25(1), 1996, 27-61.
[5] Tayebi, T., Chamkha, A.J., Öztop, H.F., Bouzeroura, L., Local thermal non-equilibrium (LTNE) effects on thermal-free convection in a nanofluid-saturated horizontal elliptical non-Darcian porous annulus, Mathematics and Computers in Simulation, 194, 2022, 124-140.
[6] Tayebi, T., Analysis of the local non-equilibria on the heat transfer and entropy generation during thermal natural convection in a non-Darcy porous medium, International Communications in Heat and Mass Transfer, 135, 2022, 106133.
[7] Tayebi, T., Chamkha, A.J., Analysis of the effects of local thermal non-equilibrium (LTNE) on thermo-natural convection in an elliptical annular space separated by a nanofluid-saturated porous sleeve, International Communications in Heat and Mass Transfer, 129, 2021, 105725.
[8] Kaloni, P.N., Guo, J., Steady nonlinear double-diffusive convection in a porous medium based upon the Brinkman-Forchheimer model, Journal of Mathematical Analysis and Applications, 204(1), 1996, 138-155.
[9] Fabes, E., Kenig, C., Verchota, G., The Dirichlet problem for the stokes system on lipschitz domains, Duke Mathematical Journal, 57, 1988, 769–793.
[10] Choe, H., Kim, H., Dirichlet problem for the stationary Navier-Stokes system on lipschitz domains, Communications in Partial Differential Equations, 36, 2011, 1919–1944.
[11] Scutaru, M.L., Guendaoui, S., Koubaiti, O., El Ouadefli, L., El Akkad, A., Elkhalfi, A., Vlase, S., Flow of Newtonian Incompressible Fluids in Square Media: Isogeometric vs. Standard Finite Element Method, Mathematics, 11(17), 2023, 3702.
[12] Discacciati, M., Quarteroni, A., Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation, Revista Matemática Complutense, 22(2), 2009, 315-426.
[13] Galdi, G., An introduction to the mathematical theory of the Navier-Stokes equations: Steady-state problems, Springer Science Business Media, 2011.
[14] Girault, V., Riviere, B.D.G., Approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition, SIAM Journal on Numerical Analysis, 47(3), 2009, 2052-2089.
[15] Temam, R., Navier-Stokes equations: theory and numerical analysis, Vol. 343, American Mathematical Soc., 2001.
[16] Hughes, T.J., Reali, A., Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, 199(5-8), 2010, 301-313.
[17] El Ouadefli, L., El Akkad, A., El Moutea, O., Moustabchir, H., Elkhalfi, A., Luminita Scutaru, M., Muntean, R., Numerical simulation for Brinkman system with varied permeability tensor, Mathematics, 10(18), 2022, 3242.
[18] El Ouadefli, L., Moutea, O.E., Akkad, A.E., Elkhalfi, A., Vlase, S., Scutaru, M.L., Mixed Isogeometric Analysis of the Brinkman Equation, Mathematics, 11(12), 2023, 2750.
[19] Koubaiti, O., EL Fakkoussi, S., El-Mekkaoui, J., Moustachir, H., Elkhalfi, A., Pruncu, C.I., The treatment of constraints due to standard boundary conditions in the context of the mixed Web-spline finite element method, Engineering Computations, 38(7), 2021, 2937-2968.
[20] Koubaiti, O., El-mekkaoui, J., Elkhalfi, A., Complete study for solving Navier-Lamé equation with new boundary condition using mini element method, International Journal of Mechanics, 12, 2018, 46-58.
[21] El Fakkoussi, S., Vlase, S., Marin, M., Koubaiti, O., Elkhalfi, A., Moustabchir, H., Predicting Stress Intensity Factor for Aluminum 6062 T6 Material in L-Shaped Lower Control Arm (LCA) Design Using Extended Finite Element Analysis, Materials, 17, 2024, 206.
[22] Montassir, S., Moustabchir, H., Elkhalfi, A., Scutaru, M.L., Vlase, S., Fracture modelling of a cracked pressurized cylindrical structure by using extended iso-geometric analysis (x-iga), Mathematics, 9(23), 2021, 2990.
[23] El-Mekkaoui, J., Elkhalfi, A., Elakkad, A., Resolution of Stokes Equations with the Ca,b Boundary Condition Using Mixed Finite Element Method, WSEAS Transactions on Mathematics, 12, 2013, 586-597.
[24] Hughes, T.J., Cottrell, J.A., Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194(39-41), 2005, 4135-4195.
[25] Cottrell, J.A., Hughes, T.J., Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, John Wiley & Sons, 2009.
[26] Gomez, H., Hughes, T.J., Nogueira, X., Calo, V.M., Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations, Computer Methods in Applied Mechanics and Engineering, 199(25-28), 2010, 1828-1840.
[27] Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G., Some estimates for h–p–k-refinement in isogeometric analysis, Numerische Mathematik, 118, 2011, 271-305.
[28] Benson, D.J., Bazilevs, Y., Hsu, M.C., Hughes, T., A large deformation, rotation-free, isogeometric shell, Computer Methods in Applied Mechanics and Engineering, 200(13-16), 2011, 1367-1378.
[29] Auricchio, F., da Veiga, L.B., Buffa, A., Lovadina, C., Reali, A., Sangalli, G., A fully “locking-free” isogeometric approach for plane linear elasticity problems: A stream function formulation, Computer Methods in Applied Mechanics and Engineering, 197(1-4), 2007, 160-172.
[30] Ergun, S., Fluid flow through packed columns, Chemical Engineering Progress, 48(2), 1952, 89-94.
[31] Seidel-Morgenstern, A. (Ed.)., Membrane reactors: distributing reactants to improve selectivity and yield, John Wiley & Sons, 2010.
[32] Bey, O., Strömungsverteilung und Wärmetransport in Schüttungen, VDI-Verlag, 1998.
[33] Vafai, K., Kim, S., On the limitations of the Brinkman-Forchheimer-extended Darcy equation, International Journal of Heat and Fluid Flow, 16(1), 1995, 11-15.
[34] Hornung, U. (Ed.)., Homogenization and porous media, Vol. 6, Springer Science & Business Media, 2012.
[35] Garibotti, C.R., Peszynska, M., Upscaling non-Darcy flow, Transport in Porous Media, 80, 2009, 401-430.
[36] Matossian, V., Bhat, V., Parashar, M., Peszynska, M., Sen, M., Stoffa, P., Wheeler, M.F., Autonomic oil reservoir optimization on the grid, Concurrency and Computation: Practice and Experience, 17(1), 2005, 1-26.
[37] Winterberg, M., Tsotsas, E., Modelling of heat transport in beds packed with spherical particles for various bed geometries and/or thermal boundary conditions, International Journal of Thermal Sciences, 39(5), 2000, 556-570.
[38] Nield, D.A., Bejan, A., Convection in porous media, Springer, New York, 2006.
[39] Skrzypacz, P., Wei, D., Solvability of the brinkman-forchheimer-darcy equation, Journal of Applied Mathematics, 2017, 2017, 7305230.
[40] Hughes, T.J., Cottrell, J.A., Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194(39-41), 2005, 4135-4195.
[41] Cocquet, P.H., Rakotobe, M., Ramalingom, D., Bastide, A., Error analysis for the finite element approximation of the Darcy–Brinkman–Forchheimer model for porous media with mixed boundary conditions, Journal of Computational and Applied Mathematics, 381, 2021, 113008.
[42] Sayah, T., A posteriori error estimates for the Brinkman–Darcy–Forchheimer problem, Computational and Applied Mathematics, 40, 2021, 1-38.
[43] Hughes, T.J., Reali, A., Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Computer Methods in Applied Mechanics and Engineering, 199(5-8), 2010, 301-313.
[44] Girault, V., Raviart, P.A., Finite element approximation of the Navier-Stokes equations, Vol. 749, Springer, Berlin, 1979.
[45] Girault, V., Raviart, P.A., Finite element methods for Navier-Stokes equations: theory and algorithms, (Vol. 5, Springer Science & Business Media, 2012.
[46] Tagliabue, A., Dede, L., Quarteroni, A., Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics, Computers & Fluids, 102, 2014, 277-303.
[47] Cayco, M.E., Nicolaides, R.A., Finite element technique for optimal pressure recovery from stream function formulation of viscous flows, Mathematics of Computation, 46(174), 1986, 371-377.
[48] Vázquez, R., A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0, Computers & Mathematics with Applications, 72(3), 2016, 523-554.
[49] Vlase, S., Dynamical response of a multibody system with flexible elements with a general three-dimensional motion, Romanian Journal of Physics, 57(3-4), 2012, 676-693.
[50] Vlase, S., Danasel, C., Scutaru, M.L., Mihalcica, M., Finite element analysis of a two-dimensional linear elastic systems with a plane “rigid motion”, Romanian Journal of Physics, 59(5-6), 2014, 476-487.
[51] Marin, M., Seadawy, A., Vlase, S., Chirila, A., On mixed problem in thermoelasticity of type III for Cosserat media, Journal of Taibah University for Science, 16(1), 2022, 1264-1274.
[52] Othman, M.I., Fekry, M., Marin, M., Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating, Structural Engineering and Mechanics, 73(6), 2020, 621-629.
[53] Abbas, I., Hobiny, A., Marin, M., Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity, Journal of Taibah University for Science, 14(1), 2020, 1369-1376.
[54] Soulaine, C., Gjetvaj, F., Garing, C., Roman, S., Russian, A., Gouze, P., Tchelepi, H.A., The impact of sub-resolution porosity of X-ray microtomography images on the permeability, Transport in Porous Media, 113, 2016, 227-243.
[55] Beirão da Veiga, L., Mora, D., Vacca, G., The Stokes complex for virtual elements with application to Navier–Stokes flows, Journal of Scientific Computing, 81, 2019, 990-1018.