[1] Gu, C.H., Soliton Theory and Its Application, Zhejiang Science and Technology Publishing House, Hangzhou, 1990.
[2] Ablowitz, M.J., Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scatting, Cambridge University Press, Cambridge, 1991.
[3] He, J.H., Li, Z.B., Converting Fractional Differential Equations into Partial Differential Equations, Thermal Science, 16, 2012, 331-334.
[4] Wang, M., Zhou, Y., Li, Z., Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A,216, 1996, 67-75.
[5] Liu, S.K., Fu, Z.T., Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations, Acta Phys. Sin., 50, 2001, 2068-2073.
[6] Wang, K. J., On a High-pass filter described by local fractional derivative, Fractals, 28(3), 2020, 2050031.
[7] Wang, K. L., Wang. K. J., He, C. H., Physical Insight of Local Fractional Calculus and its Application to Fractional Kdv-Burgers Equation, Fractals, 27(7), 2019, 1950122.
[8] Wang, K. L., Wang. K. J., A new analysis for Klein-Gordon model with local fractional derivative, Alexandria Engineering Journal, 2020, https://doi.org/10.1016/j.aej.2020.04.040.
[9] He, J.H., Exp-function method for fractional differential equations, Int. J. Nonlinear Sci. Numer. Simul., 14,2013, 363-366.
[10] He, J.H., Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B, 20,2006, 1141-1199.
[11] Guner, O., Bekir, A., Exp-function method for nonlinear fractional differential equations, Nonlinear Sci. Lett. A, 8, 2017, 41-49.
[12] Wu, Y., Variational approach to higher-order water-wave equations, Chaos Solitons Fractals, 32,2007, 195-203.
[13] Gazzola, F., Wang, Y., Pavani, R., Variational formulation of the Melan equation, Math. Methods Appl. Sci., 41,2018, 943-951.
[14] Baleanu, D., A modiﬁed fractional variational iteration method for solving nonlinear gas dynamic and coupled KdV equations involving local fractional operator, Thermal Science,22,2018, S165-S175.
[15] Durgun, D.D., Fractional variational iteration method for time-fractional nonlinear functional partial differential equation having proportional delays, Thermal Science, 22,2018, S33-S46.
[16] He, J.H., Liu, F.J., Local Fractional Variational Iteration Method for Fractal Heat Transfer in Silk Cocoon Hierarchy, Nonlinear Sci. Lett. A, 4,2013, 15-20.
[17] He, J.H., Ji, F.Y., Taylor Series Solution for Lane-Emden Equation, Journal of Mathematical Chemistry, 57(8), 2019, 1932-1934.
[18] He, C.H., Shen, Y., Ji, F.Y., He, J.H., Taylor series solution for fractal Bratu-type equation arising in electrospinning process, Fractals, 28(1), 2020, 2050011.
[19] He, J.H., Taylor series solution for a third order boundary value problem arising in architectural engineering, Ain Shams Engineering Journal, 2020, http://doi.org/10.1016/j.asej.2020.01.016.
[20] Yang, X.J., Baleanu, D., Fractal heat conduction problem solved by local fractional variation iteration method, Thermal Science, 17, 2013, 625-628.
[21] Malomed, B.A., Variational methods in nonlinear ﬁber optics and related ﬁelds, Prog. Opt., 43, 2002, 71-193.
[22] Chong, C., Pelinovsky, D.E., Variational approximations of bifurcations of asymmetric solitons in cubic-quintic nonlinear schrödinger lattices, Discret. Contin. Dyn. Syst., 4,2011, 1019-1031.
[23] Kaup, D.J., Variational solutions for the discrete nonlinear Schrödinger equation, Math. Comput. Simul., 69, 2005, 322-333.
[24] Chong, C., Pelinovsky, D.E., Schneider, G., On the validity of the variational approximation in discrete nonlinear Schrödinger equations, Phys. D Nonlinear Phenom., 241, 2011, 115-124.
[25] Putri, N.Z., Asfa, A.R., Fitri, A., Bakri, I., Syafwan, M., Variational approximations for intersite soliton in a cubic-quintic discrete nonlinear Schrödinger equation, J. Phys. Conf. Ser., 1317,2019, 012015.
[26] He, J.H., Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Solitons & Fractals, 19,2004, 847-851.
[27] He, J.H., A modified Li-He’s variational principle for plasma, Int. J. Numer. Methods Heat Fluid Flow, 2019, https://doi.org/10.1108/HFF-06-2019-0523.
[28] He, J.H., Generalized equilibrium equations for shell derived from a generalized variational principle, Appl. Math. Lett.,64, 2017, 94-100.
[29] He, J.H., Sun, C., A variational principle for a thin film equation, J. Math. Chem., 57,2019, 2075-2081.
[30] He, J.H., Variational principle for the generalized KdV-burgers equation with fractal derivatives for shallow water waves, J. Appl. Comput. Mech., 6(4), 2020, 735-740.
[31] Yue, S., He, J.H., Variational principle for a generalized KdV equation in a fractal space, Fractals, 28(4), 2020, 2050069.
[32] He, J.H., Variational principle and periodic solution of the Kundu-Mukherjee-Naskar equation, Results in Physics, 17, 2020, 103031.
[33] He, J.H., Generalized Variational Principles for Buckling Analysis of Circular Cylinders, Acta Mechanica, 231, 2020, 899-906.
[34] He, J.H., A fractal variational theory for one-dimensional compressible flow in a microgravity space, Fractals, 2019, https://doi.org/10.1142/S0218348X20500243.
[35] He, J.H., Ain, Q.T., New promises and future challenges of fractal calculus: from two-scale Thermodynamics to fractal variational principle, Thermal Science, 24(2A), 2020, 659-681.
[36] Cao, X.Q., Variational principles for two kinds of extended Korteweg-de Vries equations, Chin. Phys. B, 20, 2011, 94-102.
[37] Cao, X.Q., Generalized variational principles for Boussinesq equation systems, Acta Phys. Sin., 60, 2011, 105-113.
[38] Wang, K.L., He, C.H., A remark on Wang’s fractal variational principle, Fractals, 27, 2019, 1950132.
[39] Wang, K.L., Variational principle for nonlinear oscillator arising in a fractal nano/microelectromechanical system, Mathematical Methods in the Applied Sciences, 2020, https://doi.org/10.1002/mma.6726.
[40] El-Kalaawy, O.H., Variational principle, conservation laws and exact solutions for dust ion acoustic shock waves modeling modiﬁed Burger equation, Comput. Math. Appl., 72,2016, 1013-1041.
[41] Wang, M.L., Exact solutions for a compound KdV-Burgers equation, Phys. Lett. A, 213, 1996, 279-287.
[42] Mancas, S.C., Adams, R., Dissipative periodic and chaotic patterns to the KdV-Burgers and Gardner equations, Chaos, Solitons & Fractals, 126, 2019, 385-39.
[43] Gupta, A.K., Ray, S.S., On the solution of time-fractional KdV-Burgers equation using Petrov-Galerkin method for propagation of long wave in shallow water, Chaos, Solitons & Fractals, 116, 2018, 376-38.
[44] Cevikel, A.C., New exact solutions of the space-time fractional KdV-Burgers and non-linear fractional foam drainage equation, Thermal Science, 22, 2018, S15-S24.
[45] Shang, Y.D., Exact and explicit solutions to the compound KdV-Burgers equation, Journal of Engineering Mathematics, 17, 2000, 99-102.
[46] Zhang, W.G., Dong, C.Y, Fan, E.G., Conditional stability of solitary-wave solutions for generalized compound KdV equation and generalized compound KdV-Burgers equation, Communications in Theoretical Physics, 46, 2006, 1091-1100.
[47] Xia, T.C., Zhang, H.Q., Yan, Z.Y., New explicit and exact travelling wave solutions for a compound KdV-Burgers equation, Chin. Phys. B, 22, 2013, 030208.
[48] Zheng, X.D., Xia, T.C., Zhang, H.Q., New exact traveling wave solutions for compound KdV-Burgers equations in mathematical physics, Applied Mathematics E-Notes, 2, 2002, 45-50.
[49] Cheng, R.J., Cheng, Y.M., A meshless method for the compound KdV-Burgers equation, Chin. Phys. B., 20, 2011, 070206.
[50] Benjamin, T.B., Bona, J.L., Mahony, J.J., Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. London, 272(A), 1972, 47-78.
[51] Hong, B.J., Lu, D.C., Homotopic Approximate Solutions for the General Perturbed Burgers-BBM Equation, Journal of Information & Computational Science, 11, 2014, 4003-4011.
[52] Zhao, H.J., Xuan, B.J., Existence and convergence of solutions for the the generalized BBM-Burgers equation with dissipative term, Nonlinear Anal., 28, 1997, 1835-1849.
[53] Hong, B.J., Lu, D.C., Zhao, K.S., Explicit and Exact Solutions to the Burgers-BBM Equation, Mathematica Applicata, 20, 2007, 134-139.
[54] Yin, H., Zhao, H.J., Kim, J., Convergence rates of solutions toward boundary layer solutions for generalized Benjamin-Bona-Mahony-Burgers equations in the half-space, J. Differ. Equ., 245, 2008, 3144-3216.
[55] Yin, H., Zhao, H.J., Nonlinear stability of boundary layer solutions for generalized Benjamin-Bona-Mahony Burgers equation in the half space, Kinetic Related Models, 2, 2009, 521-550.