### Solution of the Problem of Analytical Construction of Optimal ‎Regulators for a Fractional Order Oscillatory System in the ‎General Case

Document Type : Research Paper

Authors

Institute of Applied Mathematics, Baku State University, Z. Khalilov, 23, AZ1148 Baku, Azerbaijan‎

Abstract

An algorithm is proposed for solving the problem of analytical constructing of an optimal fractional-order regulator (OFOR) in the general case. By inscribing the extended functional, the corresponding fractional order Euler-Lagrange equation is determined. Then, using the Mittag-Leffler function, a fundamental solution to the corresponding Hamiltonian system is constructed. It is shown that to obtain an analogue of the analytical construction of AM Letov's regulators, the order of the fractional derivatives must be a rational number, the denominator and numerator of which are odd numbers. Numerical illustrative examples are provided.

Keywords

Main Subjects

[1] Miller, K.S., Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
[2] Odibat, Z., Fractional Power Series Solutions of Fractional Differential Equations by using Generalized Tylor Series, Appl. Comput. Math., 19(1), 2020, 47-58.
[3] Harikrishnan, S., Kanagarajan, K., El Sayed, E.M., Existence and Stability Results for Differential Equations with Complex Order Involving Hilfer Fractional Derivative, TWMS J. Pure and Applied Mathematics, 10(1), 2019, 94-101.
[4] Abbas, S., Benchohra, M., Hamidi, N., et al., Hilfer and Hadamard Fractional Differential Equations in Frechet Spaces, TWMS J. of Pure and Applied Mathematics, 10(1), 2019, 102-116.
[5] Aliev, F.A., Aliev, N.A., Safarova, N.A., Transformation of the Mittag-Leffler Function to an Exponential Function and of its Applications to Problems with a Fractional Derivative, Appl. Comput. Math., 18(3), 2019, 311-325.
[6] Sweilam, N.H., Nagy, A.M., El-Sayed, A.A., Sinc-Chebyshev Collocation Method for Time-Fractional Order Telegraph Equation, Appl. Comput. Math., 19(2), 2020, 162-174.
[7] Set, E., Akdemir, A.O., Ozata, F., Grüss Type İnequalities for Fractional İntegral Operator İnvolving the Extended Generalized Mittag-Leffler Function, Appl. Comput. Math., 19(3), 2020, 415-420.
[8] Panakhov, E., Ercan, A., Bas, E., et al, Hilfer Fractional Spectral Problem via Bessel Operator, TWMS J. of Pure and Applied Mathematics, 10(2), 2019, 199-211.
[9] Aliev, F.A., Aliev, N.A., Mutallimov, M.M., Namazov, A.A., Identification Problem for Determining the Fractional-order Derivative of an Oscillatory System, Proceedings of IAM., 7(2), 2018, 234-246.
[10] Balachandran, K., Govindaraj, V., Rodrıguez-Germa, L., Trujillo, J.J., Stabilizatility of Fractional Dynamical Systems, Frac. Calc. Appl. Anal., 17(2), 2014, 511-532.
[11] Bonilla, B., Rivero, M., Trujillo, J.J., On Systems of Linear Fractional Differential Equations with Constant Coefficients, Appl. Math. Comput., 187, 2007, 68-78.
[12] Rabotnov, Yu.N., Elements of Hereditary Mechanics of Solids, Nauka, Moscow, 1977.
[13] Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Felik, V., Fractional-order Systems and Controls. Fundamentals and Applications, Springer-Verlag, London, 2010.
[14] Letov, A.M., Analytical Design of Controllers, Automation and Telemechanics, 21(4), 1960, 436-441.
[15] Aliev, F.A., Aliev, N.A., Safarova, N.A., Gasimova, K.G. Analytical Construction of Regulators for Systems with Fractional Derivatives, Proceed. of IAM, 2, 2017, 252-265.
[16] Aliev, F.A., Larin, V.B., Naumenko, K.I., Suntsev, V.I., Optimization of Linear Time Invariant Control Systems, Naukova Dumka, Kiev, 1978.
[17] Bryson, A., Ho, Yu.Sh., Applied Theory of Optimal Control, Mir, Moscow, 1972.
[18] Aliev, F.A., Larin, V.B., Optimization of Linear Control Systems, Gordon Breach, Amsterdam, 1998.
[19] Kalman, R., Falb, P., Arbib, M., Essays on the Mathematical Theory of Systems, Mir, Moscow, 1972.
[20] Kvakernaak, H., Sivan, R., Linear Optimal Control Systems, Mir, Moscow, 1977.
[21] Aliev, F.A., Methods for Solving Applied Problems of Optimization of Dynamic Systems, Elm, Baku, 1989.
[22] Andreev, Yu.I., Control of Finite-dimensional Linear Objects, Nauka, Moscow, 1976.
[23] Mittag-Leffler, G., Sur la Representation Analytique d`unebranche Uniformed`une Function Monogene, Acta Mathematica, 29, 1904, 101-181.
[24] Aliev, F.A., Aliev, N.A., Safarov,a N.A., New representation of Mittag-Leffler function through the exponential functions with rational derivatives, Proceedings of the 7th International Conference on Control and Optimization with Industrial Applications, 26-28 August, 2020, Baku, Azerbaijan, 80-82.
[25] Samko, S.G, Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives: Theory and applications, Gordon and Breach Science publishers, Yverdon, Switzerland, 1993.
[26] Larin, V.B., Naumenko, K.I., Suntsev, V.I., Spectral Methods for the Synthesis of Linear Systems with Feedback, Naukova Dumka, Kiev, 1973.
[27] Aliev, F.A., Larin, V.B., Synthesis of Optimal Impulse Controllers for Ideal Measurement of Object Coordinates, In the book: Navigational Gyroscopic Systems, Kiev, 1973.
[28] Aliev, F.A., Larin, V.B., Synthesis of Discrete Time Invariant Stabilization Systems, In the book: Discrete Control Systems, Kiev, 1974.
[29] Gantmakher, F.R., Matrix Theory, Nauka, Moscow, 1968.
[30] Repin, Yu.A., Tretyakov, V.E., Solution of the Problem of Analytical Construction of Regulators on Electronic Modeling Devices, Automation and Telemechanics, 24(6), 1963, 738-743.
[31] Larin, V.B., Suntsev, V.I., On the Problem of Analytical Construction of Regulators, Automation and Telemechanics, 12(4), 1968, 142-145.
[32] Youla, D.C., Jabr, H. A., Bongiorno, J.J., Jr. Modern Wiener-Hopf Design of Optimal Controllers-part ii: The multivariable case, IEEE Transactions on Automatic Control, 21(3), 1976, 319–338.
[33] Aliev, F.A., Aliev, N.A., Velieva, N.I., Safarova, N.A., Larin Parameterization to Solve the Problem of Analytical Construction of the Optimal Regulator of Oscillatory Systems with Liquid Dampers, Journal of Applied and Computational Mechanics, 6, 2020, 1426-1430.
[34] Mahmudov, N.I., Huseynov, G,T., Aliev, N.A., Aliev, F.A., Analytical Approach to a Class of Bagley-Torvik Equations, TWMS Pure Appl. Math., 11(2), 2020, 238-258.