Finite Deformations of Fibre-reinforced Elastic Solids with ‎Fibre Bending Stiffness: A Spectral Approach

Document Type : Research Paper


1 Department of Mathematics, Khalifa University of Science and Technology, United Arab Emirates

2 Departamento de Matemática Aplicada a las TIC ETS de Ingeniería de Sistemas Informáticos, Universidad Politécnica de Madrid, Madrid, 28031, Spain

3 Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago, Chile‎


In this paper, we propose a spectral approach to model finite deformations of fibre-reinforced elastic solids with fibre bending stiffness. The constructed constitutive equations depend on spectral invariants, where each one has a clear physical meaning and hence are attractive for use in experiment and analysis. With the use of spectral invariants, we easily obtain the number of independent invariants and the number of invariants in the corresponding minimal integrity or irreducible basis. The proposed finite strain energy prototypes are consistent with their infinitesimal strain energy function counterparts. Some results for pure bending of a slab, and the extension and torsion of solid cylinder, that could be useful for experiments and numerical validations, are given. The proposed model could be used to obtain numerical results via modification of some computational methods found in the literature.


Main Subjects

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[1] Andreaus, U., Dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L., Numerical Simulations of Classical Problems in Two-dimensional (non) Linear Second Gradient Elasticity, Int. J. Eng. Sci., 108, 2016, 34-50.
[2] Barbagallo, G., Madeo, A., Morestin, F., P. Boisse, P., Modelling the Deep Drawing of a 3D Woven Fabric with a Second Gradient Model, Math. Mech. Solids, 22(11), 2016, 2165-2179.
[3] Barchiesi, E., Misra, A., Placidi, L., Turco, E., Granular Micromechanics-based Identification of Isotropic Strain Gradient Parameters for Elastic Geometrically Nonlinear Deformations, Z. Angew. Math. Mech., 147, 2021, 04021098.
[4] Barbagallo, G., Madeo, A., Azehaf, I., Giorgio, I., Morestin, F., P. Boisse, P., Bias Extension Test on an Unbalanced Woven Composite Reinforcement: Experiments and Modeling via a Second Gradient Continuum Approach, J. Compos. Mat., 51(2), 2016, 153-170.
[5] El Hamdaoui, M., Merodio, J., Ogden, R.W., Deformation Induced Loss of Ellipticity in an Anisotropic Circular Cylindrical Tube, J. Eng. Math., 109, 2018, 31-45.
[6] El Hamdaoui, M., Merodio, J., Ogden, R.W., Two-phase Piecewise Homogeneous Plane Deformations of a Fibre-reinforced Neo-Hookean Material with Application to Fibre Kinking and Splitting, J. Mech. Phys. Solids, 143, 2020, 104091.
[7] Ferretti, M., Madeo, A., dell’Isola, F., Boisse, P., Modeling the Onset of Shear Boundary Layers in Fibrous Composite Reinforcements by Second Gradient Theory, Z. Angew. Math. Phys., 65(3), 2013, 587–612.
[8] Holzapfel, G.A., Ogden, R.W., On Planar Biaxial Tests for Anisotropic Nonlinearly Elastic Solids: A Continuum Mechanical Framework, Math. Mech. Solids, 14, 2009, 474-489.
[9] Jones, D.F., Treloar, L.R.G., The Properties of Rubber in Pure Homogeneous Strain, J. Phys. D: Appl. Phys., 8(11), 1957, 1285-1304.
[10] Madeo, A., Ferretti, M., Dell’Isola, F., Boisse, P., Thick Fibrous Composite Reinforcements Behave as Special Second-gradient Materials: Three-point Bending of 3D Interlocks, Z. Angew. Math. Phys., 66, 2015, 2041–2060.
[11] Madeo, A., Barbagallo, G., D’Agostino, M.V., P. Boisse, P., Continuum and Discrete Models for Unbalanced Woven Fabrics, Int. J. Solids Struct., 94, 2016, 263-284.
[12] Mistra, A. Placidi, L., Dell’Isola, F. Barchiesi, E., Identification of a Geometrically Nonlinear Micromorphic Continuum via Granular Micromechanics, Z. Angew. Math. Phys., 72, 2021, 1-21.
[13] Murphy, J.G., Biwa, S., The Counterintuitive Mechanical Response in Simple Tension of Arterial Models that are Separable Functions of the I_1,I_4,I_6 Invariants, Int. J. Nonlinear Mech., 90, 2017, 72-81.
[14] Merodio, J., Ogden, R.W., Mechanical Response of Fiber-reinforced Incompressible Non-linearly Elastic Solids, Int. J. Nonlinear Mech., 40, 2005, 213-227.
[15] Nazarenko, L., Glüge, R., Altenbach, H., On Variational Principles in Coupled Strain-gradient Elasticity, Math. Mech. Solids, 2022, 1-19, DOI: 10.1177/10812865221081854.
[16] Ogden, R.W., Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids, Proc. R. Soc. Lond. A, 326, 1972, 565-584.
[17] Placidi L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L., A Second Gradient Formulation for a 2D Fabric Sheet with Inextensible Fibres, Z. Angew. Math. Phys., 67, 2016, 114.
[18] Shariff, M.H.B.M., Strain Energy Function for Filled and Unfilled Rubberlike Material, Rubber Chem. Technol., 73, 2000, 1-21.
[19] Shariff, M.H.B.M., Nonlinear Transversely Isotropic Elastic Solids: An Alternative Representation, Q. J. Mech. Appl. Math., 61, 2008, 129–149.
[20] Shariff, M.H.B.M., Physical Invariants for Nonlinear Orthotropic Solids, Int. J. Solids Struct., 48, 2011, 1906-1914.
‎[21] Shariff, M.H.B.M., The Number of Independent Invariants of an N-preferred Direction Anisotropic Solid, Math. Mech. Solids, 22(10), 2016, ‎‎1989-1996.‎
‎[22] Shariff, M.H.B.M., Anisotropic Separable Free Energy Functions for Elastic and Non-elastic Solids, Acta ‎Mech., 227(11), 2016, 3213-3237.‎
[23] Shariff, M.H.B.M., On the Spectral Constitutive Modelling of Transversely Isotropic Soft Tissue: Physical Invariants, Int. J. Eng. Sci., 120, 2017, 199-219.
[24] Shariff, M.H.B.M., Spectral Derivatives in Continuum Mechanics, Q. J. Mech. Appl. Math., 70(4), 2017, 479-476.
[25] Shariff, M.H.B.M., The Number of Independent Invariants for N Symmetric Second Order Tensors, J. Elast., 134(1), 2019, 119-126.
[26] Shariff, M.H.B.M., A General Spectral Nonlinear Elastic Consistent Tangent Modulus Tensor Formula for Finite Element Software, Res. Appl. Math., 7, 2020, 100113.
[27] Shariff, M.H.B.M., On the number of independent invariants for m unit vectors and n symmetric second order tensors, Eng. Lett., 29(2), 2021, 509-515.
[28] Soldatos, K.P., Shariff, M.H.B.M., Merodio, J., On the Constitution of Polar Fibre-reinforced Materials, Mech. Adv. Mater. Struct., 28(21), 2020, 2255-2266.
[29] Spencer, A.J.M., Theory of Invariants, In: A.C. Eringen Ed.  Continuum Physics I, Academic Press, New York, 1971.
[30] Spencer, A.J.M., Soldatos, K.P., Finite Deformations of Fibre-reinforced Elastic Solids with Fibre Bending Stiffness, Int. J. Non-lin. Mech., 42, 2007, 355-368.
[31] Valanis, K.C., Landel, R.F., The Strain-energy Function of Hyperelastic Material in Terms of the Extension Ratios, J. Appl. Phys., 38, 1967, 2997-3002.
[32] Zervos, A., Finite Elements for Elasticity with Microstructure and Gradient Elasticity, Int. J. Numer. Meth. Engng., 73, 2008, 564-595.