Bernoulli-Euler Beam Unsteady Bending Model with ‎Consideration of Heat and Mass Transfer

Document Type : Research Paper


1 Department of Applied Software and Mathematical Methods, Moscow Aviation Institute (National Research University), Moscow, 125993, Russia‎

2 Department of Materials Resistance, Dynamics and Machine Strength, Moscow Aviation Institute (National Research University),‎ Moscow, 125993, Russia‎

3 Dynamic Testing Laboratory, Research Institute of Mechanics Lomonosov Moscow State University, Moscow, 125993, Russia‎


The article describes the problem of unsteady vibrations of a Bernoulli-Euler beam taking into account the relaxation of temperature and diffusion processes. The initial mathematical model includes a system of equations for unsteady bending vibrations of the beam with consideration of heat and mass transfer. This model is obtained from the general model of thermomechanodiffusion for continuum using the D'Alembert's variational principle. The solution of the problem is obtained in the integral form. The kernels of the integral representations are Green's functions. For finding of Green's functions the expansion into trigonometric Fourier series and Laplace transform in time are used. The calculation example is investigated for a freely supported three-component beam made of zinc, copper and aluminum alloy under the action of unsteady bending moments, including the interaction of mechanical, temperature and diffusion fields.


Main Subjects

Publisher’s Note Shahid Chamran University of Ahvaz remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[1] Parfenova E.S., Knyazeva A.G., The influence of chemical reaction parameters on the interaction of thermal, diffusion and mechanical waves in the condition of surface treatment by particles beam, Computational Continuum Mechanics, 14(1), 2021, 77-90.
[2] Indeitsev D.A., Semenov B.N., Sterlin M.D., The Phenomenon of Localization of Diffusion Process in a Dynamically Deformed Solid, Doklady Physics, 57(14), 2012, 171-173.
[3] Kumar R., Ahuja S., Garg S.K., Rayleigh waves in isotropic microstretch thermoelastic diffusion solid half space, Latin American Journal of Solids and Structures, 11, 2014, 299-319.
[4] Deswal S., Kalkal K.K., Sheoran S.S., Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction, Physica B: Condensed Matter 496, 2016, 57-68
[5] Kansal T., Fundamental Solution in the Theory of Thermoelastic Diffusion Materials with Double Porosity, Journal of Solid Mechanics, 11(2), 2019, 281-296.
[6] Lata P.: Time harmonic interactions in fractional thermoelastic diffusive thick circular plate, Coupled Systems Mechanics, 8(1), 2019, 39-53.
[7] Shvets R.N., Flyachok V.M., Variacionny'j podxod k resheniyu dinamicheskix zadach mexanotermodiffuzii anizotropny'x obolochek [A variational approach to solving dynamic problems of mechanothermal diffusion of anisotropic shells], Mat. Fiz. i Nelinejnaya Mexanika, 16, 1991, 39-43 [In Russian].
[8] Aouadi M., Copetti M.I.M., Analytical and numerical results for a dynamic contact problem with two stops in thermoelastic diffusion theory, ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 96(3), 2016, 361-384.
[9] Copetti M., Aouadi M., A quasi-static contact problem in thermoviscoelastic diffusion theory, Applied Numerical Mathematics, 109, 2016, 157-183.
[10] Aouadi M., Miranville A.: Smooth attractor for a nonlinear thermoelastic diffusion thin plate based on Gurtin-Pipkin's model, Asymptotic Analysis, 95, 2015, 129-160.
[11] Aouadi M., On thermoelastic diffusion thin plate theory, Appl. Math. Mech. Engl. Ed., 36(5), 2015, 619-632.
[12] Aouadi M., Miranville A., Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory, Evolution Equations and Control Theory, 4(3), 2015, 241-263.
[13] Bhattacharya D., Kanoria M.: The influence of two temperature generalized thermoelastic diffusion inside a spherical shell, International Journal of Engineering and Technical Research, 2(5), 2014, 151-159.
[14] Wentao X., Xiaoyujie X., Jiaxin C., Zhengtong H., Kai W., Program multi-directional thermal expansion in a series of bending dominated mechanical metamaterials, Thin-Walled Structures, 174, 2022, 109147.
[15] Kai W., Yong P., Kaiyu W., Shengyu D., Weibin W., Three dimensional lightweight lattice structures with large positive, zero and negative thermal expansion, Composite Structures, 188, 2018, 287-296.
[16] Zhang J., Li Y., A Two-Dimensional Generalized Electromagnetothermoelastic Diffusion Problem for a Rotating Half-Space, Mathematical Problems in Engineering, 2014, 2014, 964218.
[17] Aouadi M., Variable electrical and thermal conductivity in the theory of generalized thermoelastic diffusion, ZAMM Zeitschrift fur Angewandte Mathematik und Physik, 57(2), 2005, 350–366.
[18] Tarlakovskii D.V., Zemskov A.V., An Elastodiffusive Orthotropic Euler-Bernoulli Beam with Considering Diffusion Flux Relaxation, Mathematical and Computational Applications, 24(1), 2019, 23.
[19] Zemskov A.V., Okonechnikov A.S., Tarlakovskii D.V., Unsteady elastic-diffusion oscillations of a simply supported Euler-Bernoulli beam under the distributed transverse load action, Multiscale Solid Mechanics. Advanced Structured Materials, 141, 2021, 487-489.
[20] Zemskov A.V., Tarlakovskii D.V., Faykin G.M., Unsteady bending of a cantilevered Euler–Bernoulli beam with diffusion, Computational Continuum Mechanics, 14(1), 2021, 40–50.
[21] Hetnarski R.B., Ignaczak J., Solution-like waves in a low-temperature nonlinear thermoelastic solid, International Journal of Engineering Science, 34, 1996, 1767-1787.
[22] Green A.E., Naghdi P.M., Thermoelasticity without energy dissipation, Journal of Elasticity, 31, 1993, 189-208.
[23] Zenkour A.M., Thermoelastic diffusion problem for a half-space due to a refined dual-phase-lag Green-Naghdi model, Journal of Ocean Engineering and Science, 5(3), 2020, 214–222.
[24] Ailawaliar P., Budhiraja S., Dynamic Problem in Thermoelastic Solid Using Dual-Phase-Lag Model with Internal Heat Source, Journal of Mathematical Sciences and Applications, 2(1), 2014, 10-16.
[25] Formalev V.F., Teploperenos v anizotropnyh tverdyh telah. Chislennye metody, teplovye volny, obratnye zadachi [Heat transfer in anisotropic solids. Numerical methods, thermal waves, inverse problems], FIZMATLIT, Moscow, 2015 [In Russian].
[26] Abbas A.I., The effect of thermal source with mass diffusion in a transversely isotropic thermoelastic infinite medium, Journal of Measurements in Engineering, 2(4), 2014, 175-184.
[27] Abo-Dahab S.M., Generalized Thermoelasticity with Diffusion and Voids under Rotation, Gravity and Electromagnetic Field in the Context of Four Theories, Applied Mathematics & Information Sciences, 13(2), 2017, 317-337.
[28] Davydov S.A., Zemskov A.V., Thermoelastic Diffusion Phase-Lag Model for a Layer with Internal Heat and Mass Sources, International Journal of Heat and Mass Transfer, 183(C), 2022, 122213.
[29] Igumnov L.A., Tarlakovskii D.V., Zemskov A.V., A two-dimensional nonstationary problem of elastic diffusion for an orthotropic one-component layer, Lobachevskii Journal of Mathematics, 38(5), 2017, 808-817.
[30] Zemskov A.V., Tarlakovskii D.V., Two-dimensional nonstationary problem elastic for diffusion an isotropic one-component layer, Journal of Applied Mechanics and Technical Physics, 56(6), 2015, 102-110.
[31] Mikhailova E.Yu., Tarlakovskii D.V., Fedotenkov G.V., Obshchaya teoriya uprugikh obolochek, MAI, Moscow, 2018 [In Russian].
[32] Ditkin, V.A., Prudnikov, A.P., Spravochnik po operacionnomu ischisleniyu [Handbook on Operational Calculus], Vysshaya Shkola, Moscow, 1965 [In Russian].
[33] Fizicheskiye velichiny: Spravochnik. [Physical quantities: Handbook], Edited by Grigoriev I.S., Meylikhov I.Z. Energoatomizdat, Moscow, 1991 [In Russian].
[34] Nirano K., Cohen M., Averbach V., Ujiiye N., Self-Diffusion in Alpha Iron During Compressive Plastic Flow, Transactions of the Metallurgical Society of AIME, 227, 1963, 950.
[35] Bekman I.N., Diffuzionnye processy pri mekhanicheskih vozdejstviyah na material. Neopublikovannyj obzor [Diffusion processes under mechanical influences on the material. Unpublished review], Moscow, 1980 [In Russian]
[36] Matsevityi V.M., Vakulenko K.V., Kazak I.B., O zalechivanii defektov v metallah pri plasticheskoj deformacii (analiticheskij obzor) [About healing of defects in metals during plastic deformation (analytical review)], Journal of Mechanical Engineering, 15(1), 2012, 66-76.